## Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination,2024

SUBJECT NAME CHEMISTRY (Theory)
(Q.P.CODE56\_1\_1,2,3)

## **General Instructions: -**

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark( $\sqrt{\ }$ ) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ( $\checkmark$ ) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.** 

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

1 | Page 56\_1\_2

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks \_\_\_\_\_(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

## **MARKING SCHEME 2023**

## CHEMISTRY (Theory)- 043 QP CODE 56/1/2

| Q.No | Value points                                                                                                    | Mark |
|------|-----------------------------------------------------------------------------------------------------------------|------|
|      | SECTION A                                                                                                       |      |
| 1    | В                                                                                                               | 1    |
| 2    | D                                                                                                               | 1    |
| 3    | В                                                                                                               | 1    |
| 4    | A, As carbon atom is missing in all the four structures so award 1 mark if attempted.                           | 1    |
| 5    |                                                                                                                 | 1    |
| 6    |                                                                                                                 | 1    |
| 7    |                                                                                                                 | 1    |
| 8    |                                                                                                                 | 1    |
| 9    | В                                                                                                               | 1    |
| 10   | D                                                                                                               | 1    |
| 11   | D                                                                                                               | 1    |
| 12   | В                                                                                                               | 1    |
| 13   | D                                                                                                               | 1    |
| 14   |                                                                                                                 | 1    |
| 15   | <u></u>                                                                                                         | 1    |
| 16   | B CECTION B                                                                                                     | 1    |
| 17   | SECTION B                                                                                                       |      |
| 1/   | (a)                                                                                                             |      |
|      | (i) Br                                                                                                          | 1    |
|      | CH-CH <sub>3</sub>                                                                                              | *    |
|      |                                                                                                                 |      |
|      | (ii)                                                                                                            |      |
|      | Br                                                                                                              |      |
|      |                                                                                                                 |      |
|      |                                                                                                                 | 1    |
|      | 0.0                                                                                                             |      |
| 4-   | OR U.S. C. H.                                                                                                   |      |
| 17   | (b)(i)It reacts with water to form alkane.                                                                      | 1    |
|      | (ii)Alcoholic KOH acts as a stronger base than aqueous KOH leads to elimination reaction of alkyl               | 1    |
|      | halide. / alkoxide ions in alcoholic KOH acts as a stronger base due to which elimination reaction takes place. | -    |
| 18   | (a)                                                                                                             | 1    |
| 10   |                                                                                                                 | 1    |
|      | СНО                                                                                                             |      |
|      | (CHOH)₄ Br₃ water (CHOH)₄                                                                                       |      |
|      | CH <sub>2</sub> OH CH <sub>2</sub> OH                                                                           |      |
|      | (b)                                                                                                             |      |
|      | CN                                                                                                              |      |
|      | CHO                                                                                                             |      |
|      | $(CHOH)_4 \xrightarrow{HCN} (CHOH)_4$                                                                           | 1    |
|      |                                                                                                                 |      |
|      | CH <sub>2</sub> OH CH <sub>2</sub> OH                                                                           |      |
| 19   | (a)                                                                                                             |      |
|      |                                                                                                                 | 1    |

|    | (b) $CH_3 - CH_2 - C - CH_2 - CH_3 = 0$                                                                                                      | H <sub>2</sub> N-NH <sub>2</sub><br>KOHGlycol CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - | СН3                                 | 1    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|
|    | 2(CH <sub>3</sub> ) <sub>3</sub> C - CHO Conc.N                                                                                              | $(CH_3)_3 C - COO^- Na^+ +$                                                                                        |                                     |      |
|    |                                                                                                                                              | (CH <sub>3</sub> ) <sub>3</sub> C – CH <sub>2</sub> –                                                              | ОН                                  |      |
| 20 |                                                                                                                                              | 2                                                                                                                  |                                     | 1    |
|    | $E_{Fe^{2+}/Fe} = E_{Fe^{2+}/Fe}^{o} - \frac{0}{2}$                                                                                          | $\frac{.059}{2} \log \frac{1}{[Fe^{2+}]}$                                                                          |                                     | 1/2  |
|    | $= -0.45 \text{ V} - \frac{0.059}{2} \log \frac{1}{0.01}$                                                                                    |                                                                                                                    |                                     | /2   |
|    | 2 001                                                                                                                                        |                                                                                                                    |                                     | 1    |
|    | = -0.45  V - 0.059  V<br>= -0.509  V                                                                                                         |                                                                                                                    |                                     |      |
| 21 |                                                                                                                                              |                                                                                                                    |                                     | 1 x2 |
|    | Order of reaction                                                                                                                            | Molecularity                                                                                                       |                                     |      |
|    | (1)Can be zero or fractional.                                                                                                                | (1) Can't be zero or fractional.                                                                                   |                                     |      |
|    | (2)Determined experimentally                                                                                                                 | (2) Not determined experimentally                                                                                  |                                     |      |
|    | (3) Applicable for complex reactions                                                                                                         | (3) Not applicable for complex reactions.                                                                          |                                     |      |
|    |                                                                                                                                              | (Any two)                                                                                                          |                                     |      |
| 22 | (1)                                                                                                                                          | SECTION C                                                                                                          |                                     | 1/   |
| 22 |                                                                                                                                              | $\mathrm{CH}_3$ / $\mathrm{CH}_3$ COOCH $_2$ CH $_2$ CH $_2$ CH $_3$                                               |                                     | ½ x6 |
|    | (B) $\rightarrow$ CH <sub>3</sub> CH <sub>2</sub> OH<br>(C) $\rightarrow$ CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH |                                                                                                                    |                                     |      |
|    | $(C) \longrightarrow CH_3 CHO$ $(D) \longrightarrow CH_3 CHO$                                                                                |                                                                                                                    |                                     |      |
|    | (E) $\rightarrow$ CH <sub>3</sub> – CH = CH– CHO                                                                                             |                                                                                                                    |                                     |      |
|    | (F) $\rightarrow$ CH <sub>3</sub> COOH(Either structure                                                                                      | or name of A to F)                                                                                                 |                                     |      |
| 23 | a) A linkage which joins two amin                                                                                                            | no acidsthrough —CONH-bond.                                                                                        |                                     |      |
|    | <ul><li>b) Hydrogen bonding</li><li>c) Starch</li></ul>                                                                                      |                                                                                                                    |                                     | 1 x3 |
|    | d) Water soluble – Vitamin B / C                                                                                                             |                                                                                                                    |                                     |      |
|    | Fat soluble – A, D, E, K (Any one)                                                                                                           |                                                                                                                    | (Any Three)                         |      |
| 24 |                                                                                                                                              |                                                                                                                    | (,, , , , , , , , , , , , , , , , , |      |
|    |                                                                                                                                              |                                                                                                                    |                                     |      |
|    |                                                                                                                                              |                                                                                                                    |                                     |      |
|    |                                                                                                                                              |                                                                                                                    |                                     |      |
|    |                                                                                                                                              |                                                                                                                    |                                     |      |
|    |                                                                                                                                              |                                                                                                                    |                                     |      |

|    | $\left(\frac{1}{9}\right) = \left(\frac{1}{3}\right)^{p}$                                                                                                                                                                                                                                                                                                                                                                                                 |        |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
|    | p = 2 (a) Order $w \cdot r \cdot t \text{ NO} = 2$ Order $w \cdot r \cdot t \text{ Br}_2 = 1$                                                                                                                                                                                                                                                                                                                                                             | ½<br>½ |  |
|    | (b) $1 \times 10^{-3} = k (0.05)^2 \times 0.05$                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |
|    | $k = \frac{1 \times 10^{-3}}{0.05 \times 0.05 \times 0.05}$                                                                                                                                                                                                                                                                                                                                                                                               | 1      |  |
|    | $k = 8 L^2 \text{ mol}^{-2} \text{ s}^{-1}$ (Unit can be ignored)                                                                                                                                                                                                                                                                                                                                                                                         | _      |  |
|    | (c) Rate = $k[NO]^2[Br_2]$                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
|    | $= 8 \times (0.4)^{2} \times (0.2)$ $= 2.56 \times 10^{-1} \text{ mol L}^{-1}$                                                                                                                                                                                                                                                                                                                                                                            | 1      |  |
| 28 | Cell constant(G*) = Conductivity x Resistance                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |
|    | $= 1.35 \times 10^{-2} \times 100$                                                                                                                                                                                                                                                                                                                                                                                                                        |        |  |
|    | =1.35 cm <sup>-1</sup> Cell constant(G*) = Conductivity x Resistance                                                                                                                                                                                                                                                                                                                                                                                      | 1      |  |
|    | 1.35cm <sup>-1</sup> = k x 90                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |
|    | 1.35/90= k                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
|    | k=0.015 Scm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |  |
|    | Molar conductivity( $\Lambda_{m}$ )= k x 1000/C                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |
|    | = <u>0.015 x1000</u>                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |  |
|    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      |  |
|    | = 750 Scm <sup>2</sup> /mol                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |  |
|    | (Deduct ½ mark for no unit or incorrect unit)  SECTION D                                                                                                                                                                                                                                                                                                                                                                                                  |        |  |
| 29 | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |  |
|    | The energy used in the splitting of degenerate d- orbitals due to the presence of ligands in a definite geometry is called Crystal Field Splitting Energy.                                                                                                                                                                                                                                                                                                | 1      |  |
|    | (b) $Ti^{3+}=3d^{1}$ i.e. $t_{2g}^{1}e_{g}^{0}$ Due to d – d transition.                                                                                                                                                                                                                                                                                                                                                                                  | 1      |  |
|    | $Cr^{3+} = 3d^3$                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      |  |
|    | Due to $t_{2g}^3$ configuration hence paramagnetic.                                                                                                                                                                                                                                                                                                                                                                                                       |        |  |
|    | - 3d V                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |
|    | $Ni^{2+} = 3d^{8}$ $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$                                                                                                                                                                                                                                                                                                                                               |        |  |
|    | CN being strong field ligand pair up the electrons and hence diamagnetic.  OR                                                                                                                                                                                                                                                                                                                                                                             | 1      |  |
|    | (c) $CN^-$ being a strong ligand leads to the pairing of electrons in $[Fe(CN)_6]^{3^-}$ leading to $d^2sp^3$ hybridization. $H_2O$ being a weak ligand does not lead to the pairing of electrons in $[Fe(H_2O)_6]^{3^+}$ leading to $sp^3d^2$ hybridization. / In $[Fe(CN)_6]^{3^-}$ , (n-1)d orbitals of central metal ion are used in hybridization ( $d^2sp^3$ ). Hence inner orbital complex whereas in $[Fe(H_2O)_6]^{3^+}$ n d orbitals of central | 1+1    |  |

|    | metal ion are used in hybridization (sp <sup>3</sup> d <sup>2</sup> ).                                                                                                                                  |           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 30 | a)Primary batteries are not rechargeable while secondary batteries are rechargeable.  (Or any other correct difference)                                                                                 | 1         |
|    | b)Overall reaction does not involve any ion in solution whose concentration can                                                                                                                         | 1         |
|    | changeduring its lifetime.                                                                                                                                                                              |           |
|    | (c)                                                                                                                                                                                                     |           |
|    | Cathode: $PbSO_4(s) + 2e^- \rightarrow Pb(s) + SO_4^{2-}(aq)$                                                                                                                                           | 1         |
|    | Anode: $PbSO_4(s) + 2H_2O(1) \rightarrow PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^-$                                                                                                                    | 1         |
|    | OR (c) (i) More efficiency (ii) Pollution free                                                                                                                                                          | 1+1       |
|    | (c) (i) More efficiency (ii) Pollution free  SECTION E                                                                                                                                                  |           |
| 31 | (a) (i)(1) Because of the absence of unpaired electrons in their d-orbitals resulting in weak bonding between the atoms/ due to presence of fully filled d orbitals, weak metallic bonding takes place. | 1         |
|    | (2) Because Cr is more stable in +3 due to stable $t_{2g}^3$ configuration while Mn is                                                                                                                  | 1         |
|    | more stable in +2 due to stable d <sup>5</sup> configuration.                                                                                                                                           |           |
|    | (3) Because of high $\Delta aH^0$ and low $\Delta_{hyd}H^0$ , $E^0$ value for Cu is positive.                                                                                                           | 1         |
|    | $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$                                                                                                                                                            | 1         |
|    | $\text{Cr}_2\text{O}_7^{2-} + 6\text{I}^- + 14\text{ H}^+ \rightarrow 2\text{ Cr}^{3+} + 3\text{I}_2 + 7\text{H}_2\text{O}$                                                                             | 1         |
|    | OR                                                                                                                                                                                                      |           |
| 31 | (b)(i)CuCl <sub>2</sub> is more stable than $Cu_2Cl_2$ as $Cu^{+2}$ is more stable than $Cu^+$ due to high $\Delta_{hyd}H^0/$                                                                           | 1         |
|    | $Cu^+$ in aqueous solution undergoes disproportionation, i.e., ${^2Cu^+}(aq) \rightarrow Cu^{2+}(aq) + Cu(s)$                                                                                           |           |
|    | (ii) $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$                                                                                                                                                                    | 1         |
|    | (iii) Fe <sup>3+</sup> , presence of unpaired electron leading to d-d transition.                                                                                                                       | 1         |
|    | (iv)                                                                                                                                                                                                    | 1/2 + 1/2 |
|    | $2\text{Na}_2\text{CrO}_4 + 2 \text{ H}^+ \rightarrow \text{Na}_2\text{Cr}_2\text{O}_7 + 2 \text{ Na}^+ + \text{H}_2\text{O}$                                                                           |           |
|    | $Na_2Cr_2O_7 + 2 KCl \rightarrow K_2Cr_2O_7 + 2 NaCl$                                                                                                                                                   | 1/2       |
|    | (v) Because of their ability to show variable oxidation states and complex formation / provide                                                                                                          | 1/2       |
|    | large surface area.                                                                                                                                                                                     | 1         |
| 32 | (a)(i)As $K_{H} \propto \frac{1}{\text{Solubility}}$ of Gas                                                                                                                                             |           |
|    | ∴O <sub>2</sub> gas has higher K <sub>H</sub> ; because higher the K <sub>H</sub> value, lower the solubility of gas in                                                                                 |           |
|    | liquid.                                                                                                                                                                                                 | 1/2 + 1/2 |
|    | (ii) Blood cells shrink.                                                                                                                                                                                | 1         |
|    | (iii) $\Delta T_b = iK_b m$                                                                                                                                                                             |           |
|    | $T_b - T_b^0 = i \times 0.52 \text{ KKg mol}^{-1} \times 1 \text{ mol Kg}^{-1}$                                                                                                                         | 1/2       |
|    |                                                                                                                                                                                                         | 1/2       |
|    | $\alpha = \frac{i-1}{n-1}$                                                                                                                                                                              |           |
|    | n=5                                                                                                                                                                                                     |           |
|    |                                                                                                                                                                                                         | 1         |

|    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | $0.6 = \frac{i-1}{5-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    | i = 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2  |
|    | $T_b - 373 \text{ K} = 3.4 \times 0.52 \times 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|    | $T_b = 1.768 + 373 \text{ K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2  |
|    | $T_b$ =374.768K(If boiling point of water is 373.15K then $T_b$ = 374.918K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 32 | (b) (i) $P_T = p_A^0 x_A + p_B^0 x_B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2  |
|    | $P_{T} = 75 \times 0.4 + 25 \times 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    | $P_T = 30 + 15 = 45 \text{ mm Hg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/   |
|    | In Vapour phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2  |
|    | $p_{B} = y_{B \times} P_{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|    | $y_B = \frac{p_B}{P_T} = \frac{p_B^o x_B}{P_T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2  |
|    | $y_{\rm B} = \frac{15}{45} = \frac{1}{3} = 0.33 \text{ mm Hg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1  |
|    | (ii)The property which depends upon the number of solute particles but not on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1  |
|    | nature of solute. ;Osmotic pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1    |
|    | (iii)Because sodium chloride undergoes dissociation (i=2) in water while glucose does not./<br>$\pi$ = i C R T ;For NaCl , i=2 and for glucose i=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 33 | a)Because N, N – diethyl-benzenesulphonamide does not contain any hydrogenatom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 x5 |
|    | attached to nitrogen atom, it is not acidic, hence insoluble in alkali.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    | <b>b)</b> Due to salt formation with aluminum chloride, the Lewis acid, which is used as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|    | catalyst.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|    | c) On reacting with nitrous acid at low temperature aniline forms benzene diazonium chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|    | which on reacting with phenol forms orange dye whereas methylamine does not.  (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|    | Phthalimide N-Alkylphthalimide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|    | $\begin{array}{c} N - R & \xrightarrow{\text{NaOH(aq)}} & \begin{array}{c} C & \tilde{\text{O}} \text{Na}^+ \\ C & \tilde{\text{O}} \text{Na}^+ \end{array} + R - \begin{array}{c} N \text{H}_2 \\ (1^\circ \text{amine}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|    | (1 amine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|    | (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|    | $NH_2$ $H-N-C-CH_3$ $H-N-C-CH_3$ $NH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    | (CH <sub>3</sub> CO) <sub>2</sub> Q Br <sub>2</sub> OH or H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|    | Pyridine CH <sub>3</sub> COOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|    | Br Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|    | (f) NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|    | CONIH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|    | CONH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|    | $(g) \qquad \qquad A \rightarrow \boxed{\hspace{1cm}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|    | ightharpoonup  igh |      |
|    | (ANY FIVE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|    | $B \rightarrow  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |