## Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024

## **SUBJECT PHYSICS (CODE 55/3/1)**

## **General Instructions: -**

| 1 | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | "Evaluation policy is a confidential policy as it is related to the confidentiality of the                                                                                                                                                                                                                                                                                                                         |
|   | examinations conducted, Evaluation done and several other aspects. Its' leakage to public in                                                                                                                                                                                                                                                                                                                       |
|   | any manner could lead to derailment of the examination system and affect the life and future                                                                                                                                                                                                                                                                                                                       |
|   | of millions of candidates. Sharing this policy/document to anyone, publishing in any                                                                                                                                                                                                                                                                                                                               |
|   | magazine and printing in News Paper/Website etc may invite action under various rules of                                                                                                                                                                                                                                                                                                                           |
|   | the Board and IPC."                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done                                                                                                                                                                                                                                                                                                                 |
|   | according to one's own interpretation or any other consideration. Marking Scheme should be                                                                                                                                                                                                                                                                                                                         |
|   | strictly adhered to and religiously followed. <b>However, while evaluating, answers which are</b>                                                                                                                                                                                                                                                                                                                  |
|   | based on latest information or knowledge and/or are innovative, they may be assessed for                                                                                                                                                                                                                                                                                                                           |
|   | their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is                                                                                                                                                                                                                              |
|   | not from marking scheme but correct competency is enumerated by the candidate, due                                                                                                                                                                                                                                                                                                                                 |
|   | marks should be awarded.                                                                                                                                                                                                                                                                                                                                                                                           |
|   | marks should be awarded.                                                                                                                                                                                                                                                                                                                                                                                           |
| 4 | The Marking scheme carries only suggested value points for the answers. These are in the nature                                                                                                                                                                                                                                                                                                                    |
|   | of Guidelines only and do not constitute the complete answer. The students can have their own                                                                                                                                                                                                                                                                                                                      |
|   | expression and if the expression is correct, the due marks should be awarded accordingly.                                                                                                                                                                                                                                                                                                                          |
| 5 | The Head-Examiner must go through the first five answer books evaluated by each evaluator on                                                                                                                                                                                                                                                                                                                       |
| 3 | the first day, to ensure that evaluation has been carried out as per the instructions given in the                                                                                                                                                                                                                                                                                                                 |
|   | Marking Scheme. If there is any variation, the same should be zero after delibration and                                                                                                                                                                                                                                                                                                                           |
|   | discussion. The remaining answer books meant for evaluation shall be given only after ensuring                                                                                                                                                                                                                                                                                                                     |
|   | that there is no significant variation in the marking of individual evaluators.                                                                                                                                                                                                                                                                                                                                    |
|   | that there is no significant variation in the marking of marviadar evaluators.                                                                                                                                                                                                                                                                                                                                     |
| 6 | Evaluators will mark( $\sqrt{\ }$ ) wherever answer is correct. For wrong answer CROSS 'X" be marked.                                                                                                                                                                                                                                                                                                              |
|   | Evaluators will not put right ( ) while evaluating which gives an impression that answer is correct                                                                                                                                                                                                                                                                                                                |
|   | and no marks are awarded. This is most common mistake which evaluators are committing.                                                                                                                                                                                                                                                                                                                             |
| 7 | If a question has parts, please award marks on the right-hand side for each part. Marks awarded for                                                                                                                                                                                                                                                                                                                |
| ' | different parts of the question should then be totaled up and written in the left-hand margin and                                                                                                                                                                                                                                                                                                                  |
|   | encircled. This may be followed strictly.                                                                                                                                                                                                                                                                                                                                                                          |
|   | energia. This may be followed suredy.                                                                                                                                                                                                                                                                                                                                                                              |
| 8 | If a question does not have any parts, marks must be awarded in the left-hand margin and                                                                                                                                                                                                                                                                                                                           |
|   | encircled. This may also be followed strictly.                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                    |

Page 1 of 15 55/3/1

| 9   | If a student has attempted an extra question, answer of the question deserving more marks should       |
|-----|--------------------------------------------------------------------------------------------------------|
|     | be retained and the other answer scored out with a note "Extra Question".                              |
|     |                                                                                                        |
| 10  | No marks to be deducted for the cumulative effect of an error. It should be penalized only once.       |
| 11  | A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer    |
|     | deserves it.                                                                                           |
|     |                                                                                                        |
| 12  | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every        |
|     | day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other         |
|     | subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number    |
|     | of questions in question paper.                                                                        |
|     | or questions in question pupor                                                                         |
| 13  | Ensure that you do not make the following common types of errors committed by the Examiner in          |
|     | the past:-                                                                                             |
|     |                                                                                                        |
|     | Leaving answer or part thereof unassessed in an answer book.                                           |
|     | Giving more marks for an answer than assigned to it.                                                   |
|     | Wrong totaling of marks awarded on an answer.                                                          |
|     | • Wrong transfer of marks from the inside pages of the answer book to the title page.                  |
|     | Wrong question wise totaling on the title page.                                                        |
|     | Wrong totaling of marks of the two columns on the title page.                                          |
|     | Wrong grand total.                                                                                     |
|     | Marks in words and figures not tallying/not same.                                                      |
|     | Wrong transfer of marks from the answer book to online award list.                                     |
|     | • Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is                |
|     | correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect          |
|     | answer.)                                                                                               |
| 1.4 | Half or a part of answer marked correct and the rest as wrong, but no marks awarded.    Will           |
| 14  | While evaluating the answer books if the answer is found to be totally incorrect, it should be         |
|     | marked as cross (X) and awarded zero (0)Marks.                                                         |
| 15  | Any ymagagad moution, mon comprise area of moules to the title maga, on totaling amon detected by      |
| 15  | Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by    |
|     | the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also    |
|     | of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the |
|     | instructions be followed meticulously and judiciously.                                                 |
| 16  | The Every in any about decreased the annulus with the swidelines siven in the "Cwidelines for Cwed     |
| 16  | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot         |
|     | <b>Evaluation</b> " before starting the actual evaluation.                                             |
| 17  | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title   |
|     | page, correctly totaled and written in figures and words.                                              |
|     |                                                                                                        |
| 18  | The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the        |
|     | prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once             |
|     | again reminded that they must ensure that evaluation is carried out strictly as per value points for   |
|     | each answer as given in the Marking Scheme.                                                            |
|     |                                                                                                        |

55/3/1 Page 2 of 15

| MARKING SCHEME: PHYSICS (042) |                                                                                                                                                                                                                                                                                                                     |       |                |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.NO.                         | CODE :55/3/1 VALUE POINTS/ EXPECTED ANSWERS                                                                                                                                                                                                                                                                         | MARKS | TOTAL<br>MARKS |
|                               | SECTION-A                                                                                                                                                                                                                                                                                                           |       |                |
| 1.                            | (B) Spherical surface                                                                                                                                                                                                                                                                                               | 1     | 1              |
| 2.                            | (B) $1.6 \times 10^{-18} \mathrm{J}$                                                                                                                                                                                                                                                                                | 1     | 1              |
| 3.                            | (C) –(0.24 nT) $\hat{k}$                                                                                                                                                                                                                                                                                            | 1     | 1              |
| 4.                            | (D) remain stationary                                                                                                                                                                                                                                                                                               | 1     | 1              |
| 5.                            | (B) 0.3 MB                                                                                                                                                                                                                                                                                                          | 1     | 1              |
| 6.                            | (C) 15.0 V                                                                                                                                                                                                                                                                                                          | 1     | 1              |
| 7.                            | (B) 1 is decreased and A is increased                                                                                                                                                                                                                                                                               | 1     | 1              |
| 8.                            | (B) Gamma rays                                                                                                                                                                                                                                                                                                      | 1     | 1              |
| 9.                            | (B) 2                                                                                                                                                                                                                                                                                                               | 1     | 1              |
| 10.                           | $(\mathbf{C}) \qquad \qquad \downarrow^{\mathbf{K_m}}$                                                                                                                                                                                                                                                              | 1     | 1              |
| 11.                           | (B) decreased by 87.5%                                                                                                                                                                                                                                                                                              | 1     | 1              |
| 12.                           | (B) 0.05 eV                                                                                                                                                                                                                                                                                                         | 1     | 1              |
| 13.                           | (D) Assertion (A) is false and Reason (R) is also false.                                                                                                                                                                                                                                                            | 1     | 1              |
| 14.                           | (C) Assertion (A) is true but Reason (R) is false.                                                                                                                                                                                                                                                                  | 1     | 1              |
| 15.                           | (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion(A).                                                                                                                                                                                                       | 1     | 1              |
| 16.                           | (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion(A).                                                                                                                                                                                                       | 1     | 1              |
|                               | SECTION- B                                                                                                                                                                                                                                                                                                          |       |                |
| 17.                           | (a) Meaning of relaxation time Derivation of R  Average time between two successive collisions of electron in presence of electric field Drift velocity of an electron $ v_d = \frac{eE}{m}\tau \qquad(i) $ Current flowing through a conductor of length $l$ and area of cross section A $ I = neAv_d \qquad(ii) $ | 1/2   |                |
|                               | $I = \frac{ne^2 AE\tau}{m} = \frac{ne^2 A\tau V}{ml}$ $R = \frac{V}{I} = \frac{ml}{ne^2 \tau A}$ OR  (b) Circuit diagram of Wheatstone bridge                                                                                                                                                                       | 1/2   | 2              |

55/3/1 Page 3 of 15

|     | By applying Kirchoff's loop rule to closed loops ADBA and CBDC                                                                                                                                                                                                                                                           | 1/2                                                                             |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---|
|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                    | 1/2                                                                             |   |
|     | $\frac{I_1}{I_2} = \frac{R_2}{R_1}$ From eq (ii)-                                                                                                                                                                                                                                                                        | 1/2                                                                             |   |
|     | $\frac{I_1}{I_2} = \frac{R_4}{R_3}$                                                                                                                                                                                                                                                                                      |                                                                                 |   |
|     | Hence, $\frac{R_2}{R_1} = \frac{R_4}{R_3}$                                                                                                                                                                                                                                                                               | 1/2                                                                             | 2 |
| 18. | Finding the focal length of objective lens 2  Magnifying power = 24 , Distance between lenses =150 cm $\frac{f_o}{f_e}$ = 24 $f_o + f_e = 150  \mathrm{cm}$ $f_e = 6  \mathrm{cm}$ $f_o = 144  \mathrm{cm}$                                                                                                              | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> | 2 |
| 19. | (a) Explanation of magnification 1 (b) Explanation 1                                                                                                                                                                                                                                                                     |                                                                                 |   |
|     | <ul> <li>(a) Yes, it offers magnification.</li> <li>We can keep the small object much closer to the eye than 25 cm and hence have it subtend a large angle.</li> <li>(b) Yes,</li> <li>Rays converging to a point behind a plane or convex mirror are reflected to a point in front of the mirror on a screen</li> </ul> | 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> 1/ <sub>2</sub> | 2 |
| 20. | Calculation of number of photons per second 2                                                                                                                                                                                                                                                                            |                                                                                 |   |
|     | Total Energy gained per second from photon= IA $E = N hv$                                                                                                                                                                                                                                                                | 1/2                                                                             |   |
| L   | I .                                                                                                                                                                                                                                                                                                                      |                                                                                 |   |

55/3/1 Page 4 of 15

|     |                                                                                                                                   | T                               | 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---|
|     | $IA = N \times \frac{hc}{\lambda}$                                                                                                |                                 |   |
|     | $N = \frac{[IA]\lambda}{hc}$                                                                                                      |                                 |   |
|     |                                                                                                                                   |                                 |   |
|     | $N = \frac{[0.1 \times 10^{-9} \times 0.4 \times 10^{-4}] \times 500 \times 10^{-9}}{6.6 \times 10^{-34} \times 3 \times 10^{8}}$ | 1                               |   |
|     | $N = 1.01 \times 10^4$                                                                                                            | 1/2                             | 2 |
| 21. |                                                                                                                                   | /2                              |   |
|     | Calculation of concentration of holes & electrons 2                                                                               |                                 |   |
|     | $n_e n_{_h} = n_i^2$                                                                                                              | 1/2                             |   |
|     | $n_h \approx 5 \times 10^{22} / m^3$                                                                                              |                                 |   |
|     |                                                                                                                                   |                                 |   |
|     | $n_e = \frac{n_i^2}{n_h}$                                                                                                         |                                 |   |
|     | "                                                                                                                                 | 1/2                             |   |
|     | $n_e = \frac{(1.5 \times 10^{16})^2}{5 \times 10^{22}}$                                                                           | /2                              |   |
|     | $n_e = 4.5 \times 10^9 / m^3$                                                                                                     | 1/2                             | _ |
|     | $n_h > n_e$ , it is a p- type crystal                                                                                             | 1/2                             | 2 |
| 22. | SECTION- C                                                                                                                        |                                 |   |
| 22. | Determination of current in branches AB, AC, BC 1+1+1                                                                             |                                 |   |
|     |                                                                                                                                   |                                 |   |
|     | $\begin{array}{c c}  & & & & & & & & & & & & & & & & & & &$                                                                       |                                 |   |
|     | For closed loop ADCA,                                                                                                             |                                 |   |
|     | $10-4(I_1-I_2)+2(I_2+I_3-I_1)-I_1=0$                                                                                              |                                 |   |
|     | $7I_1 - 6I_2 - 2I_3 = 10$ (i)                                                                                                     | 1/2                             |   |
|     | For closed loop ABCA,                                                                                                             |                                 |   |
|     | $\begin{vmatrix} 10-4I_2-2(I_2+I_3)-I_1=0 \\ I_1+6I_2+2I_3=10 &(ii) \end{vmatrix}$                                                | 1/2                             |   |
|     | For closed loop BCDED,                                                                                                            | /2                              |   |
|     | $5 - 2(I_2 + I_3) - 2(I_2 + I_3 - I_1) = 0$                                                                                       | 1,                              |   |
|     | $2I_1 - 4I_2 - 4I_3 = -5$ (iii)                                                                                                   | 1/2                             |   |
|     | Current in branch AB = $I_2 = \frac{5}{8}A$                                                                                       | 1/                              |   |
|     | Current in branch AC = $I_1 = 2.5A$                                                                                               | 1/ <sub>2</sub> 1/ <sub>2</sub> |   |
|     | Current in branch BC = $I_1 = 2.5A$                                                                                               | 1/2                             | 3 |
|     | <u> </u>                                                                                                                          | 1                               | I |

| 23. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 23. | Reason for exerting force on straight parallel conductors ½ Derivation for force per unit length 2 Explanation of nature of Force ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |
|     | One conductor experiences a force due to magnetic field of the other conductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 |   |
|     | a L d L b TEba TEBA TEBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2 |   |
|     | Magnetic field produced by conductor 'a' at all points along the length of conductor 'b' $B_a = \frac{\mu_0 I_a}{2\pi d}$ Force on conductor 'b' due to this magnetic field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2 |   |
|     | $F_{ba} = I_b L B_a$ $F_{ba} = \frac{\mu_0 I_a I_b L}{2\pi d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 |   |
|     | $f_{ba} = \frac{F_{ba}}{L} = \frac{\mu_0 I_a I_b}{2\pi d}$ directed away from a $f_{ab} = \frac{F_{ab}}{L} = \frac{\mu_0 I_a I_b}{2\pi d}$ directed away from b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2 |   |
|     | Repulsive, the forces acting on them are away from each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 | 3 |
| 24. | (a) Identifying the element X  (b) Writing the formula for reactance  (c) Showing variation of reactance with frequency  (d) Explanation of behavior of element with  (i) an ac circuit  (ii) a dc circuit  (2)  (2)  (4)  (b) Writing the element X  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2  (1/2 |     |   |
|     | (a) Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 |   |
|     | (b) $X_c = \frac{1}{\omega c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |   |

55/3/1 Page 6 of 15

| (c)  Frequency (v)  Frequency (v)                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) (i) For ac X <sub>c</sub> is finite and therefore allows the ac to pass.                                                                                         | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (a) Finding the wavelength and frequency (b) Finding the amplitude of magnetic field (c) Writing expression for magnetic field  1/2                                  | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (a) $k = \frac{2\pi}{\lambda}$<br>$\lambda = \frac{2\pi}{K} = \frac{4\pi}{3} \text{ m} = 4.18 \text{ m}$                                                             | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\omega = 2\pi \upsilon$ $v = \frac{\omega}{2\pi} = \frac{4.5 \times 10^8}{2\pi} \text{ Hz}$                                                                         | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $v = 7.16 \times 10^{-1} \text{ Hz}$<br>(b) $B_0 = \frac{E_0}{C}$                                                                                                    | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $B_0 = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \mathrm{T}$                                                                                                    | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (c) $\vec{B} = 2.1 \times 10^{-8} [(\cos 1.5 \text{ rad/m}) \text{ y} + (4.5 \times 10^8 \text{ rad/s}) \text{ t}] \hat{\mathbf{k}} \text{ T}$                       | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Statements of Bohr's first and second Postulates Derivation of expression for radius of n <sup>th</sup> orbit  Bohr's first postulate                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>the emission of radiant energy.</li> <li>Bohr's second postulate Electron revolves around the nucleus only in those orbits for</li> </ul>                   | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Electrostatic force between revolving electron and nucleus provides requisite centripetal force $\frac{mv_n^2}{r_n} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r_n^2}$ | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                      | (d) (i) For ac $X_c$ is finite and therefore allows the ac to pass.  (ii) For de $X_c$ is infinite and therefore does not allow the dc to pass.  (a) Finding the wavelength and frequency (b) Finding the amplitude of magnetic field (c) Writing expression for magnetic field (d) $\frac{1}{2}$ (a) $k = \frac{2\pi}{\lambda}$ $\lambda = \frac{2\pi}{K} = \frac{4\pi}{3} \text{ m} = 4.18 \text{ m}$ $\omega = 2\pi \upsilon$ $v = \frac{\omega}{2\pi} = \frac{4.5 \times 10^8}{2\pi} \text{ Hz}$ $v = \frac{9}{4\pi} \times 10^8 \text{ Hz}$ $v = 7.16 \times 10^{-1} \text{ Hz}$ (b) $B_0 = \frac{E_0}{c}$ $B_0 = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \text{ (cos } 1.5 \text{ rad/m}) \text{ y} + (4.5 \times 10^8 \text{ rad/s}) \text{ t}] \hat{k} \text{ T}$ Statements of Bohr's first and second Postulates Derivation of expression for radius of nth orbit 2  • Bohr's first postulate An electron in an atom revolves in certain stable orbits without the emission of radiant energy. • Bohr's second postulate Electron revolves around the nucleus only in those orbits for which the angular momentum is integral multiple of $\frac{h}{2\pi}$ .  Electrostatic force between revolving electron and nucleus provides requisite centripetal force | (d) (i) For ac $X_c$ is finite and therefore allows the ac to pass.  (ii) For de $X_c$ is infinite and therefore does not allow the dc to pass.  (a) Finding the wavelength and frequency 1+1 (b) Finding the amplitude of magnetic field ½ (c) Writing expression for magnetic field ½  (a) $k = \frac{2\pi}{\lambda}$ $\lambda = \frac{2\pi}{K} = \frac{4\pi}{3} \text{m} = 4.18 \text{m}$ $\omega = 2\pi \nu$ $\nu = \frac{\omega}{2\pi} = \frac{4.5 \times 10^8}{2\pi} \text{Hz}$ $\nu = \frac{9}{4\pi} \times 10^8 \text{Hz}$ $\nu = 7.16 \times 10^{-1} \text{Hz}$ (b) $B_0 = \frac{E_0}{c}$ $B_0 = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \text{T}$ (c) $\vec{B} = 2.1 \times 10^{-8} \text{f}(\cos 1.5 \text{ rad/m}) \text{y} + (4.5 \times 10^8 \text{ rad/s}) \text{t}) \hat{k} \text{T}$ Statements of Bohr's first and second Postulates  An electron in an atom revolves in certain stable orbits without the emission of radiant energy.  • Bohr's first postulate  An electron revolves around the nucleus only in those orbits for which the angular momentum is integral multiple of $\frac{h}{2\pi}$ .  Electrostatic force between revolving electron and nucleus provides requisite centripetal force |

55/3/1 Page 7 of 15

|     |                                                                                                                                                         | 1   |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | $v_n = \frac{e}{\sqrt{4\pi\varepsilon_0 mr_n}} \qquad(i)$                                                                                               | 1/2 |   |
|     | $mv_n r_n = \frac{nh}{2\pi}$                                                                                                                            | 1/2 |   |
|     | using equations (i) and (ii)                                                                                                                            |     |   |
|     | $r_n = \left(\frac{n^2}{m}\right) \left(\frac{h}{2\pi}\right)^2 \frac{4\pi\varepsilon_0}{e^2}$                                                          | 1/2 | 3 |
|     | " $(m)(2\pi)$ $e^2$                                                                                                                                     | ,-  |   |
| 27. | (a) Definition of atomic mass unit (u) 1 (b) Calculation of energy required 2                                                                           |     |   |
|     | (c) carestanted of the gy required                                                                                                                      |     |   |
|     | (a) atomic mass unit (u) is defined as $1/12^{th}$ of the mass of the carbon ( $^{12}C$ ) atom.                                                         | 1   |   |
|     | (b) $m(_{1}H^{2}) \rightarrow m(_{1}H^{1}) + m(_{0}n^{1})$                                                                                              |     |   |
|     | $Q = (m_R - m_P) \times 931.5  MeV$                                                                                                                     | 1/2 |   |
|     | $= (2.014102 - 1.007825 - 1.008665) \times 931.5 \text{MeV}$                                                                                            | 1/2 |   |
|     | $= -0.002388 \times 931.5 \text{MeV}$                                                                                                                   | 1/2 |   |
|     | =-2.224  MeV                                                                                                                                            |     |   |
|     | Hence energy required is 2.224 MeV                                                                                                                      | 1/2 | 3 |
| 28. |                                                                                                                                                         |     |   |
|     | (a) Drawing the circuit diagram for V-I characteristics 1                                                                                               |     |   |
|     | Salient features of V-I characteristics in                                                                                                              |     |   |
|     | (i) Forward biasing 1                                                                                                                                   |     |   |
|     | (ii) Reverse biasing 1                                                                                                                                  |     |   |
|     |                                                                                                                                                         |     |   |
|     | Voltmeter(V)                                                                                                                                            |     |   |
|     |                                                                                                                                                         |     |   |
|     | p n                                                                                                                                                     | 1   |   |
|     |                                                                                                                                                         |     |   |
|     | Milliammeter Microammeter (mA) (μA)                                                                                                                     |     |   |
|     | Switch                                                                                                                                                  |     |   |
|     | イー (a) - 体 (b)                                                                                                                                          |     |   |
|     | [any one circuit diagram]                                                                                                                               |     |   |
|     | - · · · · · · · · · · · · · · · · · · ·                                                                                                                 |     |   |
|     | Salient features  (i) Forward bigging. A from thread old yelloop on out in yelloop diede                                                                | 1   |   |
|     | (i) <b>Forward biasing</b> - After threshold voltage or cut in voltage diode current increases significantly (exponentially), even for a small increase | 1   |   |
|     | in the diode bias voltage.                                                                                                                              |     |   |
|     | (ii) <b>Reverse biasing-</b> Current is very small (~μA) and almost remains                                                                             | 1   |   |
|     | constant and it increases rapidly after breakdown voltage.                                                                                              |     |   |
|     |                                                                                                                                                         |     |   |
|     | OR                                                                                                                                                      |     |   |
|     |                                                                                                                                                         |     |   |

55/3/1 Page 8 of 15

|     | Differ<br>(i) an<br>(ii) a                                                                         | ry band diagrams rence between insulator semiconductor metal                              | 1+1+1                                                                 |             |   |
|-----|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|---|
|     | (i)                                                                                                | Electron energies $E_V$                                                                   | Empty conduction band $E_g > 3 \; \mathrm{eV}$ Valence band           | 1           |   |
|     | (ii)                                                                                               | Electron energies $ \downarrow^{E^g} $                                                    | $E_C$ EV                                                              | 1           |   |
|     | (iii)                                                                                              | Electron energies $E_{\rm V}$                                                             | Overlapping conduction band $(E_g \approx 0)$ Valence band            | 1           | 3 |
|     |                                                                                                    | SECTIO                                                                                    | N- D                                                                  |             |   |
| 29. | (iii) (A) V= V<br>(iv) (a) (C) E                                                                   | $E_1 > E_2 > E_1$                                                                         |                                                                       | 1<br>1<br>1 | 4 |
| 30. | (i) (D) 6<br>(ii) (C) 3<br>(iii) (a) (C) 6<br><b>OR</b><br>(b) sin <sup>-1</sup> (0<br>(iv) (D) 10 |                                                                                           | ANI E                                                                 | 1<br>1<br>1 | 4 |
| 31. | (ii) Fir                                                                                           | aining expression for the ading the electric potential i) at the surface i) at the centre | capacitance 3                                                         |             |   |
|     |                                                                                                    |                                                                                           | tween the plates of capacitor, there oses the original charge density |             |   |

55/3/1 Page 9 of 15

| Electric field with dielectric medium is                                                                          | 1/2   |  |
|-------------------------------------------------------------------------------------------------------------------|-------|--|
|                                                                                                                   |       |  |
| 1                                                                                                                 |       |  |
| $E = \frac{(\sigma - \sigma_P)}{\sigma_P}$                                                                        | 1/2   |  |
| $E = \frac{(\sigma - \sigma_P)}{\varepsilon_0}$ $V = E \times d = \frac{(\sigma - \sigma_P)}{\varepsilon_0} d$    |       |  |
| $V=E\times d=\frac{1}{\varepsilon_0}d$                                                                            | 1/2   |  |
|                                                                                                                   |       |  |
| $(\sigma - \sigma_P) = \frac{\sigma}{\kappa}$                                                                     | 1/2   |  |
| N.                                                                                                                | /2    |  |
| $V = \frac{\sigma d}{\varepsilon_0 K} = \frac{Qd}{A\varepsilon_0 K}$                                              | 1/2   |  |
| $arepsilon_0 K \qquad \mathrm{A} arepsilon_0 K$                                                                   | , , , |  |
| $Q = Q = K \varepsilon_0 A$                                                                                       | 1/2   |  |
| $C = \frac{Q}{V} = \frac{K \varepsilon_0 A}{d}$                                                                   |       |  |
|                                                                                                                   |       |  |
| (ii) Electric potential due to a point charge                                                                     |       |  |
| $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$                                                                        | 1/2   |  |
|                                                                                                                   |       |  |
| (i) At the surface                                                                                                |       |  |
| $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{9 \times 10^9 \times 6 \times 10^{-6}}{0.2}$                    | 1/    |  |
| $4\pi\varepsilon_0 r$ 0.2                                                                                         | 1/2   |  |
| $V = 2.7 \times 10^5 \text{ V}$                                                                                   | 1/2   |  |
| $V = 2.7 \times 10^{\circ} \text{ V}$                                                                             | /2    |  |
| (ii) Since electric field inside the hollow sphere is zero, hence V is same                                       |       |  |
| as that of the surface and remains constant throughout the volume.                                                | 1/2   |  |
| $V = 2.7 \times 10^5 \text{ V}$                                                                                   | , , , |  |
| $V = 2.7 \times 10^{-7}$ OR                                                                                       |       |  |
| (b) (i) Expression for electric field at a point lying                                                            |       |  |
| (i) inside                                                                                                        |       |  |
| (ii) outside 2                                                                                                    |       |  |
| (ii) Explanation 2                                                                                                |       |  |
| ( / 1                                                                                                             |       |  |
| (i) <u>Field inside the shell</u>                                                                                 |       |  |
| Gaussian surface                                                                                                  |       |  |
| Surface charge                                                                                                    |       |  |
| density o                                                                                                         |       |  |
| r                                                                                                                 |       |  |
|                                                                                                                   |       |  |
|                                                                                                                   |       |  |
|                                                                                                                   |       |  |
|                                                                                                                   |       |  |
|                                                                                                                   |       |  |
| The Flux through the Gaussian surface is                                                                          |       |  |
| The Flux through the Gaussian surface is $= E \times 4\pi R^{2}$                                                  | 1/2   |  |
| $= E \times 4\pi R^2$                                                                                             | 1/2   |  |
| = $E \times 4\pi R^2$<br>In this case Gaussian surface encloses no charge.                                        |       |  |
| = E × $4\pi R^2$<br>In this case Gaussian surface encloses no charge.<br>Hence $E \times 4\pi R^2 = 0$            | 1/2   |  |
| = $E \times 4\pi R^2$<br>In this case Gaussian surface encloses no charge.                                        |       |  |
| $= E \times 4\pi R^{2}$ In this case Gaussian surface encloses no charge. Hence $E \times 4\pi R^{2} = 0$ $E = 0$ |       |  |
| = E × $4\pi R^2$<br>In this case Gaussian surface encloses no charge.<br>Hence $E \times 4\pi R^2 = 0$            |       |  |

|     | (ii) Field outside the shell-                                                                                                                                                                                                                    |                                 |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---|
|     | Surface charge Gaussian surface density σ                                                                                                                                                                                                        |                                 |   |
|     | R <sub>O</sub><br>r <sub>P</sub>                                                                                                                                                                                                                 | 1/2                             |   |
|     | Electric flux through Gaussian surface $E \times 4\pi r^2 = \frac{(\sigma  4\pi R^2)}{\varepsilon_0}$                                                                                                                                            | 1/2                             |   |
|     | Charge enclosed by the Gaussian surface $E \times 4\pi r^2 = \frac{(\sigma  4\pi R^2)}{\varepsilon_0}$ Using Gauss's law: $\int \vec{E} \cdot \vec{ds} = \frac{Q}{\varepsilon_0}$ $E \times 4\pi r^2 = \frac{(\sigma  4\pi R^2)}{\varepsilon_0}$ | 1/2                             |   |
|     | $E \times 4\pi r^2 = \frac{(\sigma  4\pi R^2)}{\varepsilon_0}$ $E = \frac{\sigma}{\varepsilon_0} \frac{R^2}{r^2} = \frac{q}{4\pi \varepsilon_0 r^2}$                                                                                             | 1/2                             |   |
|     | (ii) For conducting sheet, Electric field due to a conducting sheet $E_c = \frac{\sigma}{\varepsilon_0}$ Surface                                                                                                                                 | 1/2                             |   |
|     | z charge density $\sigma$                                                                                                                                                                                                                        |                                 |   |
|     | For non-conducting sheet $E_{nc} = \frac{\sigma}{2\varepsilon_0}$                                                                                                                                                                                | 1/2                             |   |
|     | Since surface charge density is same. $2E_{nc} = E_c$                                                                                                                                                                                            | 1/ <sub>2</sub> 1/ <sub>2</sub> | 5 |
| 32. | (a) (i)(1) Meaning of current sensitivity, mentioning factors 2 (2) Finding the required resistance 1½ (ii) Finding the induced current 1½                                                                                                       |                                 |   |
|     | (i) (1). Current sensitivity of galvanometer is defined as the deflection per unit current.  Alternatively, $\frac{\phi}{I} = \frac{NBA}{K}$                                                                                                     | 1                               |   |
|     | Factors Number of turns in coil, Magnetic field intensity, Area of coil, Torsional Constant (Any two)                                                                                                                                            | 1/2+1/2                         |   |

55/3/1 Page 11 of 15

| (2) $R = \frac{V}{I} - G$ for (0-V) Range $R_1 = \frac{V}{2I} - G$ for $(0 - \frac{V}{2})$ Range | 1/2     |   |
|--------------------------------------------------------------------------------------------------|---------|---|
| $R_1 = \frac{\vec{V}}{2I} - G$ for $(0 - \frac{\vec{V}}{2})$ Range                               | 1/2     |   |
| $\frac{V}{I} = R + G$                                                                            |         |   |
| $R_1 = \left(\frac{R+G}{2}\right) - G$                                                           |         |   |
| $R_1 = \frac{R - G}{2}$                                                                          | 1/2     |   |
| (ii) $\phi = (2.0t^3 + 5.0t^2 + 6.0t) \text{ mWb}$                                               |         |   |
| $ \varepsilon  = \frac{d\phi}{dt} = 50 \times 10^{-3} \text{ V}$                                 | 1/2     |   |
| $\mathrm{I}=rac{ arepsilon }{R}$                                                                | 1/2     |   |
| $I = \frac{\frac{1}{50} \times 10^{-3}}{5} A = 10 \text{ mA}$                                    | 1/2     |   |
| OR                                                                                               |         |   |
| (i) Obtaining the expression of emf induced 3                                                    |         |   |
| (ii) Calculation of mutual inductance 2                                                          |         |   |
|                                                                                                  |         |   |
| Coil Axle                                                                                        |         |   |
|                                                                                                  |         |   |
|                                                                                                  |         |   |
| $\frac{1}{N}$                                                                                    | 4       |   |
|                                                                                                  | 1       |   |
| Slip rings Alternating emf                                                                       |         |   |
|                                                                                                  |         |   |
| Carbon                                                                                           |         |   |
| brushes                                                                                          |         |   |
| (i) The flux at any instant t is                                                                 |         |   |
| $\phi = NBA \cos\theta = NBA \cos\omega t$                                                       | 1/2     |   |
|                                                                                                  | /2      |   |
| From Faraday's law $\boldsymbol{\varepsilon} = -\frac{d\phi_B}{dt}$                              | 1/2     |   |
| dt dt                                                                                            | /2      |   |
| $=-NBA\frac{d}{dt}\left(\cos\omega t\right)$                                                     | 1/2     |   |
|                                                                                                  |         |   |
| $\varepsilon = -NBA \omega \sin \omega t$                                                        | 1/2     |   |
| (ii) $M = \frac{\mu_0 \pi r_1^2}{2r_2} = \frac{4\pi \times 10^{-7} \times \pi r_1^2}{2r_2}$      | 1/2+1/2 |   |
| $r_1$ $r_2$ $r_2$ $r_2$ $r_2$                                                                    | ,2.,2   |   |
| $=\frac{2\times10\times10^{-7}\times\left(10^{-2}\right)^2}{100\times10^{-7}}$                   | 1/2     |   |
| $-\frac{100\times10^{-7}}{}$                                                                     | /2      |   |
| $= 2 \times 10^{-10} \text{ H}$                                                                  | 1/2     | _ |
|                                                                                                  |         | 5 |
|                                                                                                  |         | 1 |



| $\frac{1}{\sqrt{2}}\frac{\cos\theta}{\sin\theta} = 1$                 |          |   |
|-----------------------------------------------------------------------|----------|---|
|                                                                       |          |   |
| $\tan \theta = \frac{1}{\sqrt{2}}$                                    | 1/       |   |
| v =                                                                   | 1/2      |   |
| From the triangle GEF                                                 |          |   |
| $\sin \theta = \frac{1}{\sqrt{2}}$                                    |          |   |
| $\sin \theta = \frac{1}{\sqrt{3}}$ $\mu = \sqrt{\frac{3}{2}}$         | 1/2      |   |
| $\mu = \frac{3}{5}$                                                   |          |   |
| ·                                                                     |          |   |
| OR                                                                    |          |   |
| (b) (i) Expression for resultant intensity 3                          |          |   |
| (ii) Ratio of intensities 2                                           |          |   |
| (i) $y_1 = a \cos \omega t$                                           |          |   |
| $y_2 = a\cos(\omega t + \phi)$                                        |          |   |
| According to the principle of superposition                           |          |   |
|                                                                       | 1/2      |   |
| $y = y_1 + y_2$                                                       | /2       |   |
| $y = a\cos\omega t + a\cos(\omega t + \phi)$                          |          |   |
| $y = a\cos\omega t + a\cos\omega t\cos\phi - a\sin\omega t\sin\phi$   | 1.0      |   |
| $y = a\cos\omega t(1 + \cos\phi) - a\sin\phi\sin\omega t$             | 1/2      |   |
| Let,                                                                  |          |   |
| $a(1 + \cos \phi) = A\cos \theta \qquad (i)$                          |          |   |
| $a \sin \phi = A \sin \theta$ (ii)                                    | 1/2      |   |
| Squaring and adding equation (i) and (ii)                             |          |   |
| $A^2 = a^2 (1 + \cos\phi)^2 + a^2 \sin^2 \phi$                        |          |   |
| $= a^2(1 + \cos^2\phi + 2\cos\phi) + a^2\sin^2\phi$                   |          |   |
|                                                                       | 1/2      |   |
| $=2a^2(1+\cos\phi)$                                                   |          |   |
| $=4a^2\cos^2\phi/2$                                                   | 1/2      |   |
| $I\alpha A^2$                                                         | , 2      |   |
| $I = kA^2$                                                            |          |   |
| where k is constant                                                   | 1/2      |   |
| $I = 4ka^2 \cos^2 \phi / 2$                                           | 72       |   |
| [Award full credit for this part for any other alternative methods]   |          |   |
| (ii) $\phi_1 = \frac{2\pi}{\lambda} \times \frac{\lambda}{6} = \pi/3$ | 17       |   |
| (ii) $\Psi_1 - \frac{1}{\lambda} \wedge \frac{1}{6} - \frac{n}{3}$    | 1/2      |   |
| $I_1 = 4I_0 \cos^2 \phi / 2$                                          |          |   |
|                                                                       |          |   |
| $=4I_0\cos^2(\pi/6)$                                                  | 1.       |   |
| $I_1 = 3I_0$                                                          | 1/2      |   |
|                                                                       |          |   |
| $\phi_2 = \frac{2\pi}{\lambda} \times \frac{\lambda}{12} = \pi/6$     |          |   |
| γ 2 λ 12 17 5                                                         |          |   |
| $I_2 = 4I_0 \cos^2(\pi/12)$                                           | 1/2      |   |
| - , , ,                                                               |          |   |
| $I_2 = 4I_0 \cos^2 15^0$                                              |          |   |
| L 3                                                                   |          |   |
| $\frac{I_1}{I_2} = \frac{3}{4\cos^2 15^0}$                            | 1/2      | 5 |
| -2 1000 10                                                            |          |   |
| <br>                                                                  | <u> </u> |   |

55/3/1 Page 14 of 15

55/3/1 Page 15 of 15