Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024-25

SUBJECT NAME CHEMISTRY (Theory) -043 (Q.P.CODE 56/1/2) MM: 70

General Instructions: -

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.

Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks _____(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)

Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.

Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

CHEMISTRY (Theory)- 043

QP CODE 56/1/2 MM: 70

Q. No	Value points	Mark
	SECTION A	
1	(B)	1
2	(C)	1
3	(B)	1
4	(A)	1
5	(D)	1
6	(C)	1
7	(D)	1
8	(A)	1
9	(A)	1
10	(C)	1
11	(C)	1
12	(B)	1
13	(D)	1
14	(B)	1
15	(B)	1
16	(A)	1
	SECTION B	
17	(a) $A = CH_3CH_2CN$; $B = CH_3CH_2 CH_2NH_2$	½ x 4
	(b) $A = C_6 H_5 N_2^+ C I^-$;	
	N=N-N-NH-	
	B =	
18	A = Na ₂ CrO ₄ / Sodium chromate	½ × 4
	B =Na ₂ Cr ₂ O ₇ / Sodium dichromate	=2
	C = K ₂ Cr ₂ O ₇ / Potassium dichromate	
10	D = I ₂ / lodine	1
19	Less reactive,	1
	The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon	1
	atom of the carbonyl group present in propanal / The polarity of the carbonyl group is	1
20	reduced in benzaldehyde due to resonance.	1
20	(A) (a) Due to high pressure inside the pressure cooker, higher is the boiling point and	1
	faster is the cooking.	
	(b)	1/
	Negative deviation	1/2
	Temperature increases.	1/2
20	OR (P)	
20	(B)	1
	Same composition in liquid and in vapour phase and boil at a constant temperature.	1
	Maximum Boiling Azeotrope	1/2
24	68% HNO ₃ + 32% H ₂ O (Or any other correct example) (Percentage can be ignored)	1/2
21	(a) Presence of dipolar ion / Zwitter ion which create stronger electrostatic force of attraction /	1
	structure of Zwitter ion with explanation.	
	(b) Due to the presence of both carboxylic group and amino group / due to the presence of	1
	zwitter ion structure it can react with acids and bases.	

	SECTION C	
22	$\Pi = CRT = \frac{w_B RT}{M_B V}$	
	π_{BV} $\pi_{glucose} = \pi_{urea}$	1
	$C_G = C_U$	1/2
	$\frac{W_G}{W_G} = \frac{W_U}{W_G}$	1/2
	$\frac{W_G}{M_G} = \frac{W_U}{M_U} = \frac{wG}{180} = \frac{15}{60}$	
	$\frac{1}{180} = \frac{1}{60}$	
	15×180	
	$WG = {60}$	
	=45 g	1
23	E°c _{ell} = E° _{cathode} -E° _{anode}	
	=E°Ag+/Ag=E°Fe3+/Fe2+	
	= 0.80 - 0.77	
	= 0.03 V	1/2
	$\triangle G^0 = -nF E^0 C_{ell}$	1/2
	= -1 x 96500 X 0.03 = -2895 J/mol	
	= -2.895 KJ/ mol	1
	$\triangle G^0 = -2.303 \text{RT log Kc}$	1/2
	$\log Kc = -\Delta G^0 / 2.303RT$	
	= 2895 / 2.303 x 8.314 X 298	
	log Kc = 2895 / 5700	1/
24	= 0.508 (Or any other suitable method)	1/2
24	(a) p-nitroaniline > Aniline > p-methylanilineb) (i) Due to resonance stabilization.	1
	(ii) Methylamine in water acts as a base and release OH- ions which reacts with FeCl ₃ to	1
	form hydrated ferric oxide. / chemical equation	_
25	(A) (a)	
	Br	1
	CH ₃	1
	CI	
	(b)	
	Br	
	сн ₃	
		1
	(c)	
	CI	
	HO	1
	OR	
25	(B)	
	(a)	
	2 Na	1
	2 Ether	1
	-2NaCl	
	I .	<u> </u>

	(b)	
	(b)	
	$CH_3CH = CH_2 + HBr \xrightarrow{peroxide} CH_3CH_2CH_2Br$	1
	CH ₃ CH ₂ CH ₂ I ← Acetone	
	(c)	
	Br Lithanolis KOH	
	$CH_3 - CH - CH_2 - CH_3 \xrightarrow{Ethanolic KOH}$	1
	$CH_3-CH=CH-CH_3 \cdot HBr$	
	(or any other suitable method of conversion)	
26.	(a) its high $\Delta_{ m a} \overline{H^{ m o}}$ and low $\Delta_{ m hyd} \overline{H^{ m o}}$	1
	(b)	
	• Cr	1/2,1/2
	• Cr ³⁺ (d ⁴ to d ³) / stable half-filled t _{2g} level	
	(c) Fully-filled d-orbitals hence no d-d transition / due to the absence of unpaired electron.	1
27	$t_{1/2} = \frac{0.693}{k}$	
	$k_1 = \frac{0.693}{20} = 0.03465 / 3.465 \times 10^{-2} \text{ min}^{-1}$	1/2
	20	/ 2
	$k_2 = \frac{0.693}{5} = 0.1386 / 1.386 \times 10^{-1} \text{min}^{-1}$	1/2
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$	1/2
	$\kappa_1 = 2.505 \text{K} \begin{bmatrix} I_1 I_2 \end{bmatrix}$	/2
	$\log \frac{0.1386}{0.03465} = \frac{Ea}{2.303 \times 8.314} \frac{[350 - 300]}{[350 \times 300]}$	
	$\begin{bmatrix} 0.03465 & 2.303 \times 8.314 & [350 \times 300] \end{bmatrix}$	1/2
	$\log 4 = \frac{Ea}{19.15} \frac{[50]}{[350 \times 300]}$ $E = \frac{24.200 \text{ J. model}}{[350 \times 300]} \frac{[50]}{[350 \times 300]} \frac{[50]}{[$	1
28	Ea = 24209 J mol ⁻¹ or 24.209 kJ mol ⁻¹ (Deduct ½ mark for no or incorrect unit) (a) (i)	
20		
	CHO CH=N-OH	1
	$(CHOH)_4 \xrightarrow{NH_3OH} (CHOH)_4$	
	CH_2OH CH_2OH	
	(ii)	
	CHO CHO O	
	A cetic an hydride	
	СH ₂ -О-С-СН ₃	1
	C .	
	(b) Vitamin C is water soluble and is excreted through urine.	1

	SECTION D	
29	(a)	
	(i)	
	OH OH OH L	
	$rac{\operatorname{Br_2 in CS_2}}{273 \mathrm{V}}$	
	273 K	1
	Br / 2-Bromophenol and 4-Bromophenol is	
	formed.	
	(ii)	
	OH OH O_2N O_2N OO_2	
	Conc. HNO ₃	1
		1
	$\frac{1}{NO_2}$ / 2.4.6-Trinitrophenol / Picric acid is	
	- , z, i, e	
	formed. (b)Due to resonance, the lone pair of electrons on oxygen is not easily available for	
	protonation.	1
	(c)	-
	Phenol	
	Due to electron releasing effect (+I effect) of methyl group/ phenoxide ion formed is less	1/2
	stable in cresol.	1/2
	OR	
	(c) 2-Hydroxybenzaldehyde / 2- Hydroxybenzenecarbaldehyde.	1
30	(a) (i) Slowest step.	1
	(ii) Series of elementary reactions / Reactions involving two or more steps.	1
	(b) Increases with increase in temperature	1
	OR	
	(b) Molecularity is defined only for elementary reactions whereas order is experimentally	
	determined hence applicable for both / Because molecularity of each elementary reaction in	1
	complex reaction may be different and hence meaningless for overall complex reaction whereas	
	order of a complex reaction is experimentally determined by the slowest step in its mechanism	
	and is therefore applicable for both.	4
	(c) 9 times	1
24	SECTION E	
31	(A) (a) (i) OH	1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'
	(ii)	
	CH₃CH₂COOH + NaOH + CaO + heat → CH₃-CH₃	1
	(b) A = $(CH_3)_2CH=CHCH_3$ / 2-Methylbut-2-ene	1 1
	B = CH ₃ CHO / Ethanal	1 1
	C = CH ₃ COCH ₃ / Acetone/ Propanone OR	1
31	$A = C_3H_7COOC_4H_9$ / Butyl butanoate	1
31	B= C ₃ H ₇ COOH / Butanoic acid	1/2
	$C = C_4H_9OH / Butan-1-ol$	1/2
	$C_3H_7COOC_4H_9+ dil.H_2SO_4 \rightarrow C_3H_7COOH + C_4H_9OH$	1
	$C_4H_9OH + Conc. Sulphuric acid + Heat \rightarrow CH_3CH_2CH=CH_2$	1
	C_4H_9OH C_3H_7COOH	1

32	(A) a) +3	1
	b) d ² sp ³ , octahedral	1/2+1/2
	c) Paramagnetic	1
	d) Yes,	1/2
	Ca C	
	en Fe	
	cis form (en)	1/2
	e) dichloridobis(ethane-1,2-diamine)iron(III) Chloride	1
	OR	
		4
32	B)a) i) Tetraamminechloridonitrito-N-cobalt(III) chloride	1
	ii) Potassium hexacyanidoferrate(III)	1
	iii)Trioxalatochromate(III) ion	1
	b)	
	 The energy required to split the degenerate d-orbitals into two sets of orbitals. / 	
	The difference of energy between the two sets of d-orbitals t ₂ g and eg due to the	1
	presence of ligands in a definite geometry	
	 The orbital splitting energies are not sufficiently large for forcing paring of 	
	electrons.	1
33		
	(A) (a) The cell reaction is	
	0(-), 0.1.1+()	1
	$Sn(s)+2H^{+}(aq)\rightarrow Sn^{2+}(aq)+H_{2}(g)$	'
	$0.059 [Sn^{2+}]$	1
	$E_{Cell} = (E^{o}_{c} - E^{o}_{a}) - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]_{c}^{2}}$	'
	[(0) (0 14)] 0.059 , 0.004	
	$= [(0) - (-0.14)] - \frac{0.059}{2} log \frac{0.004}{(0.02)^2}$	
	= 0.14 - 0.0295 log 10	
	= 0.1105 V	1
		'
	b) (i) overpotential of O ₂	1
	, (, , , , , , , , , , , , , , , , , ,	
	(ii) Number of ions carrying current per unit volume decreases on dilution	1
		'
22	OR	
33	B) a) At anode: Pb+SO ₄ ⁻² \rightarrow PbSO ₄ +2e-	1/
		1/2
	At cathode: $PbO_2 + SO_4^{-2} + 4H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$	1/2
	FUO2T 3O4 T411 TZET→FU3O4TZ□2O	/2
	Overall reaction:	
	Overall reaction: Pb+PbO₂+2 SO₄⁻²+4H⁺ →2PbSO₄+2H₂O	1
	$\begin{array}{c} PD+PDO_2+2 SO_4 -+4H \rightarrow 2PDSO_4+2H_2O \\ b) \end{array}$	1
	0.059 $[Cr^{3+}]^2$	1
	$E_{Cell} = E^{\circ}_{Cell} - \frac{0.059}{n} \log \left[\frac{[Cr^{3+}]^2}{[Cr207^{2-}][H+]^{14}} \right]$	'
		1
	Ecell = $1.33 - \frac{0.059}{6} \log (10^{-2})^2 / (10^{-2}) (1 \times 10^{-4})^{14}$	'
	$= 1.33 - \frac{0.059}{6} (54) \log 10$	
	$= 1.33 - 0.059 \times 9$	
	= 1.33 – 0.531	1
	= 0.799 V	'