

paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धांतिक) CHEMISTRY (Theory)

अधिकतम अंक : 70 Maximum Marks : 70 P.T.O.

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्नपत्र में 33 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्नपत्र पाँच खण्डों में विभाजित है खण्ड क, ख, ग, घ तथा ङ ।
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) खण्ड ग प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 3 अंकों का है ।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 प्रकरण आधारित प्रश्न हैं। प्रत्येक प्रश्न 4 अंकों का है।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 5 अंकों का है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड **क** के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग वर्जित है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानोंका उपयोग कर सकते हैं :

- 2

$$\begin{split} \mathbf{c} &= 3 \times 10^8 \text{ m/s} \\ \mathbf{h} &= 6.63 \times 10^{-34} \text{ Js} \\ \mathbf{e} &= 1.6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \\ \text{$$\bar{\mathbf{s}}$ cher{x}$iff an $\bar{\mathbf{x}}$ cauthant (\mathbf{m}_e) = 9.1×10^{-31} kg. \\ \mathbf{r} arggin an $\bar{\mathbf{x}}$ cauthant = 1.675×10^{-27} kg. \\ \text{$$\bar{\mathbf{x}}$ light in $\bar{\mathbf{x}}$ cauthant = 1.673×10^{-27} kg. \\ \text{$$\bar{\mathbf{x}}$ light in $\bar{\mathbf{x}}$ cauthant = 1.673×10^{-27} kg. \\ \text{$$\bar{\mathbf{x}}$ light in $\bar{\mathbf{x}}$ cauthant = 1.673×10^{-27} kg. \\ \text{$$\bar{\mathbf{x}}$ light in $\bar{\mathbf{x}}$ cauthant = 1.673×10^{-27} kg. \\ \text{$$\bar{\mathbf{x}}$ light in $\bar{\mathbf{x}}$ cauthant = 1.38×10^{-23} JK}^{-1} \end{split}$$

56/2/1

o sigo o
acte:
LINE AN ALS

General Instructions :

Read the following instructions carefully and follow them :

- (i) This question paper contains **33** questions. **All** questions are **compulsory**.
- (ii) This question paper is divided into FIVE sections Section A, B, C, D and E.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) Section C questions number 22 to 28 are short answer type questions. Each question carries 3 marks.
- (vi) Section D questions number 29 and 30 are case-based questions. Each question carries 4 marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section –A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.

(x) Use of calculator is NOT allowed. You may use the following values of physical constants wherever necessary : $c = 3 \times 10^8 \text{ m/s}$ $h = 6.63 \times 10^{-34} \text{ Js}$ $e = 1.6 \times 10^{-19} \text{ C}$ $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$ $\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$ $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$ Mass of electron (m_e) = 9.1 × 10⁻³¹ kg. Mass of neutron = $1.675 \times 10^{-27} \text{ kg}$. Mass of proton = $1.673 \times 10^{-27} \text{ kg}$. Avogadro's number = $6.023 \times 10^{23} \text{ per gram mole}$ Boltzmann's constant = $1.38 \times 10^{-23} \text{ JK}^{-1}$

		खण्ड – क	$16 \times 1 = 16$
प्रश्न	संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1	अंक के प्रश्न हैं ।	
1.	$1 { m Him} { m MnO}_4^-$ को ${ m MnO}_2^{}$ में अपचयित	करने के लिए आवश्यक आवेश है	
	(A) 1 F	(B) 3 F	
	(C) 5 F	(D) 6 F	
2.	निम्नलिखित में से कौन सा कथन गलत है ?		
	(A) शून्य कोटि अभिक्रिया वेग अभिकारक	की प्रारंभिक सांद्रता से स्वतंत्र होता	है ।
	(B) शून्य कोटि अभिक्रिया की अर्द्ध-आयु	, वेग स्थिरांक के व्युत्क्रमानुपाती होत	ती है ।
	(C) किसी अभिक्रिया की आण्विकता शून्स्	हो सकती है ।	
	(D) प्रथम कोटि अभिक्रिया के लिए ${ m t}_{1/2}$:	= 0.693/k	
3.	अणुओं की संख्या जो किसी प्राथमिक अभि	कया में परस्पर अभिक्रिया करते हैं, ए	एक माप होती है
	(A) अभिक्रिया की सक्रियण ऊर्जा की	(B) अभिक्रिया की स्टॉइ	कियोमेट्री की
	(C) अभिक्रिया की आण्विकता की	(D) अभिक्रिया की कोति	टे की
4.	$[{ m Ar}] 3 { m d}^{10} 4 { m s}^1$ इलेक्ट्रॉनिक विन्यास वाला र	त्व है	
	(A) Cu	(B) Zn	
	(C) Cr	(D) Mn	
5.	संकुल आयन $[{ m Co}({ m NH}_3)_5({ m NO}_2)]^{2+}$ तथ	$[{ m Co(NH}_3)_5({ m ONO})]^{2+}$ कहला	ाते हैं
	(A) आयनन समावयवी	(B) बंधनी समावयवी	
	(C) उपसहसंयोजन समावयवी	(D) ज्यामितीय समावयव	त्री
6.	प्रतिचुंबकीय स्पीशीज़ है		
	(A) $[Ni(CN)_4]^{2-}$	(B) $[NiCl_4]^{2-}$	
	(C) $[Fe(CN)_6]^{3-}$	(D) $[CoF_6]^{3-}$	
	[परमाणु संख्या : Co = 27, Fe = 26, N	= 28]	
501	9/1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56/	<i>21</i> 1	~ 4 ~	

SECTION – A

Question No. 1 to 16 are Multiple Choice type questions carrying 1 mark each.

- 1. The charge required for the reduction of $1 \mod MnO_4^-$ to MnO_2 is
 - (A) 1 F (B) 3 F
 - (C) 5 F (D) 6 F
- 2. Which among the following is a false statement ?
 - (A) Rate of zero order reaction is independent of initial concentration of reactant.
 - (B) Half-life of a zero order reaction is inversely proportional to the rate constant.
 - (C) Molecularity of a reaction may be zero.
 - (D) For a first order reaction, $t_{1/2} = 0.693/k$.
- 3. The number of molecules that react with each other in an elementary reaction is a measure of the :
 - (A) activation energy of the reaction (B) stoichiometry of the reaction
 - (C) molecularity of the reaction (D) order of the reaction
- 4. The element having $[Ar]3d^{10}4s^1$ electronic configuration is

(A)	Cu	(B)	Zn
$\langle \mathbf{O} \rangle$	a		

(C) Cr (D) Mn

5. The complex ions $[Co(NH_3)_5 (NO_2)]^{2+}$ and $[Co(NH_3)_5 (ONO)]^{2+}$ are called

- (A) Ionization isomers (B) Linkage isomers
- (C) Co-ordination isomers (D) Geometrical isomers
- 6. The diamagnetic species is :
 - (A) $[Ni(CN)_4]^{2-}$ (B) $[NiCl_4]^{2-}$
 - (C) $[Fe(CN)_6]^{3-}$ (D) $[CoF_6]^{3-}$
 - [At. No. Co = 27, Fe = 26, Ni = 28]

P.T.O.

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं – जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए :

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
- (D) अभिकथन (A) गलत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A): प्रथम कोटि अभिक्रिया में यदि अभिकारक की सांद्रता दोगुनी हो जाती है, तो इसका अर्धायुकाल भी दोगुना हो जाता है।
 - **कारण (R) :** प्रथम कोटि अभिक्रिया में अर्धायुकाल अभिकारक की प्रारंभिक सांद्रता पर निर्भर नहीं करता है ।
- 14. अभिकथन (A): Cu तनु खनिज अम्ल के साथ अभिक्रिया करके H₂ मुक्त नहीं कर सकता।
 कारण (R): Cu का इलेक्ट्रोड विभव धनात्मक है।
- 15. अभिकथन (A): ऐरोमैटिक प्राथमिक ऐमीन को गैब्रिएल थैलिमाइड संश्लेषण द्वारा नहीं बनाया जा सकता है।
 - **कारण (R) :** ऐरिल हैलाइड थैलिमाइड से प्राप्त ऋणायन के साथ नाभिकरागी प्रतिस्थापन अभिक्रिया नहीं कर सकते ।
- 16. अभिकथन (A): विटामिन D हमारे शरीर में संचित नहीं हो सकता है।
 - **कारण (R) :** विटामिन D वसा में घुलनशील विटामिन है और मूत्र के माध्यम से शरीर से बाहर नहीं निकलता है ।

56/2/1	~ 8 ~

For question number 13 to 16, two statements are given – one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below :

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 13. Assertion (A) : In a first order reaction, if the concentration of the reactant is doubled, its half-life is also doubled.
 - **Reason (R) :** The half-life of a reaction does not depend upon the initial concentration of the reactant in a first order reaction.
- 14. Assertion (A) : Cu cannot liberate H_2 on reaction with dilute mineral acids.

Reason (R): Cu has positive electrode potential.

15. Assertion (A) : Aromatic primary amines cannot be prepared by Gabriel Phthalimide synthesis.

Reason (R) : Aryl halides do not undergo nucleophilic substitution reaction with the anion formed by phthalimide.

16. Assertion (A) : Vitamin D cannot be stored in our body.

Reason (R) : Vitamin D is fat soluble vitamin and is not excreted from the body in urine.

56/2/1 ~ 9 ~ P.T.O.

ৰুण্ड – ख

17.	(A)	शून्य कोटि की अभिक्रिया A → P के लिए वेग स्थिरांक 0.0030 mol L ⁻¹ s ⁻¹ है । A की प्रारंभिक सांद्रता 0.10 M से 0.075 M तक रह जाने में कितना समय लगेगा ? अथवा	2
	(B)	प्लैटिनम सतह पर NH_3 का अपघटन शून्य कोटि अभिक्रिया है । यदि k = $2.5 imes10^{-4}$	
	(2)	mol L $^{-1}~{\rm s}^{-1}$ है तो N $_2$ और H $_2$ के उत्पादन की दरें क्या हैं ?	2
18.	निम्न	लेखित पदों को परिभाषित कीजिए :	2×1
	(a)	छद्म प्रथम कोटि अभिक्रिया	
	(b)	अभिक्रिया ($\mathrm{t_{1/2}}$) का अर्धायुकाल	
19.	निम्न	लेखित प्रेक्षणों की व्याख्या कीजिए :	2×1
	(a)	संक्रमण तत्व सामान्यतः रंगीन यौगिक बनाते हैं ।	
	(b)	जिंक संक्रमण तत्व नहीं माना जाता है।	

1

- 20. IUPAC मानदंड के अनुसार निम्नलिखित उपसहसंयोजन यौगिकों के नाम बताइए : 2×1
 - $[Co(NH_3)_4(H_2O)Cl]Cl_2$ (a)
 - $[CrCl_2(en)_2] Cl$ (b)
- हैलोजन यौगिकों के निम्नलिखित युगल में से कौन सा यौगिक तीव्रता से ${
 m S}_{
 m N} 1$ अभिक्रिया करेगा 21. (a) और क्यों ?

निम्नलिखित यौगिकों को ${f S}_{
m N}2$ प्रतिस्थापन के प्रति उनकी अभिक्रियाशीलता के बढ़ते क्रम में (b) व्यवस्थित कीजिए : 1 2--ब्रोमो-2--मेथिलब्यूटेन, 1--ब्रोमोपेन्टेन, 2--ब्रोमोपेन्टेन

SECTION – B

17. (A) The rate constant for a zero order reaction $A \rightarrow P$ is 0.0030 mol L⁻¹s⁻¹. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?

OR

- (B) The decomposition of NH_3 on platinum surface is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4}$ mol L⁻¹ s⁻¹? 2
- 18. Define the following terms :
 - (a) Pseudo first order reaction
 - (b) Half-life period of reaction $(t_{1/2})$
- 19. Examine the following observations :
 - (a) Transition elements generally form coloured compounds.
 - (b) Zinc is not regarded as a transition element.
- 20. Name the following coordination compounds according to IUPAC norms : 2×1
 - (a) $[Co(NH_3)_4(H_2O)Cl]Cl_2$
 - (b) $[\operatorname{CrC} l_2 (\operatorname{en})_2] \operatorname{C} l$
- 21. (a) In the following pair of halogen compounds, which compound undergoes $S_N 1$ reaction faster and why? 1

(b) Arrange the following compounds in increasing order of their reactivity towards $S_N 2$ displacement :

2-Bromo-2-methylbutane, 1-Bromopentane, 2-Bromopentane.

 2×1

2

 2×1

- 22. $25 \,^{\circ}\text{C}$ पर पानी का संतृप्त वाष्प दाब $24 \, \text{mm Hg}$ है। उसी ताप पर यूरिया के 5% जलीय विलयन का संतृप्त वाष्प दाब ज्ञात कीजिए। (यूरिया का मोलर द्रव्यमान = $60 \, \text{g mol}^{-1}$) **3**
- 23. $0.8~{
 m cm^2}$ क्षेत्रफल और 40 सेमी लंबाई वाले $0.05~{
 m M}~{
 m NaOH}$ विलयन के स्तंभ का विद्युत प्रतिरोध $5 imes 10^3$ ओम है। इसकी प्रतिरोधकता, चालकता और मोलर चालकता की गणना कीजिए। **3**
- 24. निम्नलिखित रासायनिक समीकरण को पूर्ण एवं संतुलित कीजिए : 3 imes 1
 - (a) $\operatorname{MnO}_{4}^{-} + \operatorname{C}_{2}\operatorname{O}_{4}^{2-} + \operatorname{H}^{+} \longrightarrow$
 - (b) $\text{KMnO}_4 \xrightarrow{35\text{SMI}} 513 \text{ K}$
 - (c) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + \operatorname{H}_2 \operatorname{S} + \operatorname{H}^+ \longrightarrow$
- 25. संयोजकता आबंध सिद्धांत का उपयोग करते हुए, निम्नलिखित के संकरणीकरण और चुंबकीय व्यवहार को समझाइए : $2 imes 1^{\frac{1}{2}} = 3$
 - (a) $[Co(NH_3)_6]^{3+}$
 - (b) [Ni(CO)₄]

[परमाणु संख्या : Co = 27, Ni = 28]

26. (a) निम्नलिखित को परिभाषित कीजिए : 2 + 1 = 3

- (i) प्रतिबिंब रूप (एनेनटियोमर)
- (ii) रेसिमिक मिश्रण
- (b) क्लोरोबेंज़ीन नाभिकरागी प्रतिस्थापन अभिक्रिया के प्रति प्रतिरोधी क्यों है ?

SECTION - C

- 22. At 25 °C the saturated vapour pressure of water is 24 mm Hg. Find the saturated vapour pressure of a 5% aqueous solution of urea at the same temperature. (Molar mass of urea = 60 g mol⁻¹)
- 23. The electrical resistance of a column of 0.05 M NaOH solution of area 0.8 cm^2 and length 40 cm is 5×10^3 ohm. Calculate its resistivity, conductivity and molar conductivity.

24. Complete and balance the following chemical equations :
$$3 \times 1$$

(a) $\operatorname{MnO}_{4}^{-} + \operatorname{C}_{2}\operatorname{O}_{4}^{2-} + \operatorname{H}^{+} \longrightarrow$

(b)
$$\text{KMnO}_4 \xrightarrow{\text{Heat}} 513 \text{ K}$$

(c)
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + \operatorname{H}_2 \operatorname{S} + \operatorname{H}^+ \longrightarrow$$

- 25. Using valence bond theory, explain the hybridization and magnetic character of the following : $2 \times 1\frac{1}{2} = 3$
 - (a) $[Co(NH_3)_6]^{3+}$
 - (b) [Ni(CO)₄]
 [At. no. : Co = 27, Ni = 28]
- 26. (a) Define the following :

2 + 1 = 3

3

- (i) Enantiomers
- (ii) Racemic mixture
- (b) Why is chlorobenzene resistant to nucleophilic substitution reaction ?

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56/2/1	~ 13 ~	Р.Т.О.





(c) कैनिज़ारो अभिक्रिया

## अथवा

(B) निम्न अभिक्रियाओं के अनुक्रम में A, B और C की संरचनाएँ लिखिए :  $2 \times 1\frac{1}{2} = 3$ 

 $3 \times 1 = 3$ 

(a) 
$$CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{H_2, Pd-BaSO_4} B \xrightarrow{H_2N-NH_2} C$$
  
(b)  $CH_3CN \xrightarrow{1.(DIBAL-H)} A \xrightarrow{\overline{rg} NaOH} B \xrightarrow{\Delta} C$ 

- 28. निम्नलिखित पदों को परिभाषित कीजिए :
  - (a) ग्लाइकोसाइडी बंध
  - (b) अपवृत शर्करा
  - (c) ओलिगोसैकैराइड

## **खण्ड** – ঘ

29. शुद्ध विलायक से विलयन में अथवा तनु विलयन से सांद्र विलयन में अर्धपारगम्य झिल्ली के माध्यम से विलायक का स्वतः प्रवर्तित प्रवाह परासरण कहलाता है । परासरण परिघटना को एक ही आकार के दो अंडों को लेकर प्रदर्शित किया जा सकता है । अंडे में खोल के नीचे और अंडे के पदार्थ के चारों ओर की झिल्ली अर्धपारगम्य होती है । अंडे को तनु हाइड्रोक्लोरिक अम्ल में डालकर बाहरी कठोर खोल को हटाया जा सकता है । कठोर खोल को हटाने के बाद एक अंडे को आसुत जल में और दूसरे को संतृप्त नमक के घोल में रखा जाता है । कुछ समय बाद, आसुत जल में रखा अंडा फूल जाता है, जबकि नमक के घोल में रखा अंडा सिकुड़ जाता है । परासरण को रोकने के लिए लगाया गया बाह्य दाब, परासरण दाब (एक अणुसंख्य गुणधर्म) कहलाता है । प्रतिलोम परासरण तब होता है जब लगाया गया बाह्य दाब परासरण दाब से अधिक हो जाता है ।





 $3 \times 1 = 3$ 

 $3 \times 1 = 3$ 

- (a) Wolff-Kishner reduction
- (b) Etard reaction
- (c) Cannizzaro reaction

### OR

(B) Write the structures of A, B and C in the following sequence of reactions :  $2 \times 1\frac{1}{2} = 3$ 

(a) 
$$CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{H_2, Pd-BaSO_4} B \xrightarrow{H_2N-NH_2} C$$
  
(b)  $CH_3CN \xrightarrow{1.(DIBAL-H)} A \xrightarrow{Dil. NaOH} B \xrightarrow{\Delta} C$ 

- 28. Define the following terms :
  - (a) Glycosidic linkage
  - (b) Invert sugar
  - (c) Oligosaccharides

## **SECTION – D**

29. The spontaneous flow of the solvent through a semipermeable membrane from a pure solvent to a solution or from a dilute solution to a concentrated solution is called osmosis. The phenomenon of osmosis can be demonstrated by taking two eggs of the same size. In an egg, the membrane below the shell and around the egg material is semipermeable. The outer hard shell can be removed by putting the egg in dilute hydrochloric acid. After removing the hard shell, one egg is placed in distilled water and the other in a saturated salt solution. After some time, the egg placed in distilled water swells-up while the egg placed in salt solution shrinks. The external pressure applied to stop the osmosis is termed as osmotic pressure (a colligative property). Reverse osmosis takes place when the applied external pressure becomes larger than the osmotic pressure.



 (a) प्रतिलोम परासरण को परिभाषित कीजिए । एक अर्धपारगम्य झिल्ली (SPM) का नाम बताइए जिसका उपयोग प्रतिलोम परासरण की प्रक्रिया में किया जा सकता है ।
 (b) (i) जब लाल रुधिर कोशिकाओं (RBC) को 0.5% NaCl विलयन में रखा जाता है तो आप क्या होने की अपेक्षा करते हैं ?

### अथवा

(b) (ii) 1 M KCl अथवा 1 M यूरिया विलयन में से किसका परासरण दाब अधिक होगा। अपने उत्तर का औचित्य दीजिए।

1

1

2

1

(c) परासरण दाब एक अणुसंख्य गुणधर्म क्यों है ?

30. ऐमीनों में नाइट्रोजन परमाणु पर एकाकी इलेक्ट्रॉन युग्म होता है जिसके कारण वे लुईस क्षारक की तरह व्यवहार करते हैं । K_b का मान जितना अधिक होगा या pK_b का मान जितना कम होगा, क्षारक उतना ही प्रबल होगा । ऐल्कोहॉल, ईथर, एस्टर आदि की तुलना में ऐमीन अधिक क्षारकीय हैं । ऐलिफैटिक ऐमीन का क्षारकीय गुण ऐल्किल प्रतिस्थापन की वृद्धि के साथ-साथ बढ़ना चाहिए । लेकिन यह नियमित रूप से नहीं होता है क्योंकि द्वितीयक ऐलिफैटिक ऐमीन अप्रत्याशित रूप से जलीय विलयन में तृतीयक ऐमीन की तुलना में अधिक क्षारकीय होता है । ऐरोमैटिक ऐमीन अप्रत्याशित रूप से जलीय विलयन में तृतीयक ऐमीन की तुलना में अधिक क्षारकीय होता है । ऐरोमैटिक ऐमीन अप्रत्याशित रूप से जलीय विलयन में तृतीयक ऐमीन की तुलना में उर्वल क्षारक होते हैं । इलेक्ट्रॉन मुक्त करने वाले समूह जैसे – CH₃, –OCH₃, –NH₂ आदि, क्षारकीयता को बढ़ाते हैं जबकि इलेक्ट्रॉन खींचने (अपनयन) वाले प्रतिस्थापित समूह जैसे – NO₂, –CN, हैलोजन आदि, ऐमीन की क्षारकीयता को कम करते हैं । इन प्रतिस्थापनों का प्रभाव m⁻ स्थितियों की तुलना में p⁻पर अधिक होता है ।

(a) निम्नलिखित को उनके क्षारकीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए। कारण दीजिए।



(b) मेथिलऐमीन की तुलना में ऐनिलीन का  $\mathrm{pK}_{\mathrm{b}}$  मान अधिक क्यों होता है ?



56/2/1



(a)	a) Define reverse osmosis. Name one SPM which can be used in the		
	proc	cess of reverse osmosis.	2
(b)	(i)	What do you expect to happen when red blood corpuscles (RBC's) are placed in 0.5% NaCl solution ?	1
		OR	
(b)	(ii)	Which one of the following will have higher osmotic pressure in	
		$1 \ \mathrm{M} \ \mathrm{KC}l$ or $1 \ \mathrm{M}$ urea solution. Justify your answer.	1
(c)	Why	y osmotic pressure is a colligative property ?	1

- 30. Amines have a lone pair of electrons on nitrogen atom due to which they behave as Lewis base. Greater the value of K_b or smaller the value of pK_b, stronger is the base. Amines are more basic than alcohols, ethers, esters, etc. The basic character of aliphatic amines should increase with the increase of alkyl substitution. But it does not occur in a regular manner as a secondary aliphatic amine is unexpectedly more basic than a tertiary amine in aqueous solutions. Aromatic amines are weaker bases than ammonia and aliphatic amines. Electron releasing groups such as -CH₃, -OCH₃, -NH₂, etc., increase the basicity while electron-withdrawing substituents such as -NO₂, -CN, halogens etc., decrease the basicity of amines. The effect of these substitute is more at p⁻ than at m⁻ position.
  - (a) Arrange the following in the increasing order of their basic character.Give reason :



(b) Why  $pK_b$  of aniline is more than that of methylamine ?



**P.T.O.** 

1

2

56/2/1



	(c)	(i)	जलीय विलयन में निम्नलिखित को उनके क्षारकीय गुणों के बढ़ते हुए क्रम में व्यवस्थित	
			कीजिए । कारण दीजिए ।	1
			$(CH_3)_3N$ , $(CH_3)_2NH$ , $NH_3$ , $CH_3NH_2$	
			अथवा	
	(c)	(ii)	शुद्ध ऐमीनों के विरचन के लिए ऐल्किल हैलाइडों का ऐमोनी-अपघटन एक अच्छी विधि	
			क्यों नहीं है ?	1
			खण्ड – ভ	
31.	(A)	(a)	$\mathrm{CH}_3 - \mathrm{CH} = \mathrm{CH} - \mathrm{CHO}$ का $\mathrm{IUPAC}$ नाम बताइए ।	1
		(b)	प्रोपेनैल और प्रोपेनोन में विभेद करने के लिए एक सरल रासायनिक परीक्षण दीजिए।	1
		(c)	आप निम्नलिखित को कैसे परिवर्तित करेंगे ?	3
			(i) टॉलूईन को बेंजोइक अम्ल में	
			(ii) एथेनॉल को प्रोपेन—2—ऑल में	
			(iii) प्रोपेनैल को 2-हाइड्रॉक्सीप्रोपेनोइक अम्ल में	
			अथवा	
31.	(B)	निम्न	लिखित प्रत्येक संश्लेषण में छूटे हुए प्रारंभिक पदार्थ, अभिकर्मक अथवा उत्पादों को देकर पूर्ण	
		कीजि	तए: 5×1	= 5

(a)  $(H^+ HO - NH_2 \xrightarrow{H^+}$ 

(b) ? 
$$\frac{(i) O_3}{(ii) Zn - H_2 O}$$
 2  $\bigcirc = O$ 



(c)	) (i) Arrange the following in the increasing order of their basic character in an aqueous solution :		1
		$(CH_3)_3N$ , $(CH_3)_2NH$ , $NH_3$ , $CH_3NH_2$	
		OR	
(c)	(ii)	Why ammonolysis of alkyl halides is not a good method to prepare pure amines ?	1
		$\mathbf{SECTION} - \mathbf{E}$	
(A)	(a)	Give IUPAC name of $CH_3 - CH = CH - CHO$ .	1
	(b)	Give a simple chemical test to distinguish between propanal and propanone.	1
	(c)	How will you convert the following :	3
		(i) Toluene to benzoic acid	
		(ii) Ethanol to propan-2-ol	
		(iii) Propanal to 2-hydroxy propanoic acid	

# OR

31. (B) Complete each synthesis by giving missing starting material, reagent or products :  $5 \times 1 = 5$ 

31.

(b) ? 
$$\frac{(i) O_3}{(ii) Zn - H_2 O} 2$$

56/2/1 ~ 19 ~ P.T.O.



32. (A) (a) 25 °C पर निम्नलिखित अभिक्रिया के लिए मानक गिब्ज ऊर्जा ( $\Delta_{\!_{
m r}}{
m G}^{
m o}$ ) का परिकलन कीजिए : 3 + 2

Au(s) + Ca²⁺(1M) → Au³⁺(1M) + Ca(s)  

$$E^{\circ}_{Au^{3+}/Au} = + 1.5 \text{ V}, E^{\circ}_{Ca^{2+}/Ca} = -2.87 \text{ V}$$

प्रागुक्ति कीजिए कि 25 °C पर अभिक्रिया स्वतः प्रवर्तित होगी या नहीं।

 $[1 \text{ F} = 96500 \text{ C mol}^{-1}]$ 

(b) मलिन चाँदी में Ag₂S होता है । क्या इस मलिनता को मलिन चाँदी के बर्तन को एल्युमिनियम पैन में रखकर हटाया जा सकता है, जिसमें NaCl जैसा निष्क्रिय विद्युत अपघटनी विलयन भरा हो ? अर्ध अभिक्रिया के लिए मानक इलेक्ट्रॉड विभव :

$$Ag_2S(s) + 2e^- \longrightarrow 2Ag(s) + S^{2-}$$
 के लिए  $-0.71 \text{ V}$  है औ  
 $Al^{3+} + 3e^- \longrightarrow 2Al(s)$  के लिए  $-1.66 \text{ V}$  है।

### अथवा

32. (B) (a) निम्नलिखित को परिभाषित कीजिए :

2 + 3

- (i) सेल विभव
- (ii) ईंधन सेल

56/2/1		
00/2/1	$\sim 20 \sim$	



32. (A) (a) Calculate the standard Gibbs energy ( $\Delta_r G^\circ$ ) of the following reaction at 25 °C : 3 + 2

Au(s) + Ca²⁺(1M) 
$$\rightarrow$$
 Au³⁺(1M) + Ca(s)  
E[°]_{Au³⁺/Au} = + 1.5 V, E[°]_{Ca²⁺/Ca} = - 2.87 V

Predict whether the reaction will be spontaneous or not at 25  $^{\rm o}{\rm C}.$ 

 $[1 \text{ F} = 96500 \text{ C mol}^{-1}]$ 

(b) Tarnished silver contains  $Ag_2S$ . Can this tarnish be removed by placing tarnished silverware in an aluminium pan containing an inert electrolytic solution such as NaCl? The standard electrode potential for half reaction :

2 + 3

$$Ag_2S(s) + 2e^- \longrightarrow 2Ag(s) + S^{2-} is -0.71 V and for$$
  
 $Al^{3+} + 3e^- \longrightarrow 2Al(s) is -1.66 V$   
**OR**

32. (B) (a) Define the following :

- (i) Cell potential
- (ii) Fuel cell

56/2/1	$\sim~21~\sim$	P.T.O

- (b) निम्नलिखित सेल के emf की 25 °C पर गणना करें :  $Zn(s) |Zn_{(0.1M)}^{2+}| |Cd_{(0.01M)}^{2+}| Cd(s)$ दिया है :  $E_{Cd^{2+}/Cd}^{\circ} = -0.40 V$   $E_{Zn^{2+}/Zn}^{\circ} = -0.76 V$ [log 10 = 1]
- 33. (A) आण्विक सूत्र  $C_2H_6O$  वाला कोई कार्बनिक यौगिक 'A'  $CrO_3$  के साथ अभिक्रिया करके यौगिक 'B' बनाता है। यौगिक 'B' आयोडीन और NaOH के जलीय विलयन के साथ गर्म किए जाने पर यौगिक 'C' का पीला अवक्षेप देता है। जब यौगिक 'A' को 413 K पर सांद्र  $H_2SO_4$ के साथ गर्म करते हैं तो यौगिक 'D' बनता है जो आधिक्य HI के साथ अभिक्रिया करके यौगिक 'E' देता है। यौगिक 'A', 'B', 'C', 'D' और 'E' की पहचान कीजिए तथा सम्मिलित रासायनिक समीकरण लिखिए।

#### अथवा

- (i) सांद्र HNO3 के साथ फ़ीनॉल की अभिक्रिया
- (ii)  ${
  m B}_{2}{
  m H}_{6}$  के साथ प्रोपीन की अभिक्रिया उसके पश्चात उसका  ${
  m H}_{2}{
  m O}_{2}/{
  m O}{
  m H}^{-}$  द्वारा ऑक्सीकरण

5

- (iii) सोडियम t-ब्यूटॉक्साइड के साथ  ${
  m CH}_{3}{
  m C}l$  की अभिक्रिया
- (b) ब्यूटेन—1—ऑल और ब्यूटेन—2—ऑल के मध्य विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए।
- (c) निम्नलिखित को उनके अम्लीय गुणों के बढ़ते हुए क्रम में व्यवस्थित कीजिए :
   फ़ीनॉल, एथेनॉल, जल

56/2/1

- (b) Calculate emf of the following cell at 25 °C :  $Zn(s) |Zn_{(0.1M)}^{2+}| |Cd_{(0.01M)}^{2+}| Cd(s)$ Given :  $E_{Cd^{2+}/Cd}^{\circ} = -0.40 V$   $E_{Zn^{2+}/Zn}^{\circ} = -0.76 V$ [log 10 = 1]
- 33. (A) An organic compound 'A', molecular formula C₂H₆O oxidises with CrO₃ to form a compound 'B'. Compound 'B' on warming with iodine and aqueous solution of NaOH gives a yellow precipitate of compound 'C'. When compound 'A' is heated with conc. H₂SO₄ at 413 K gives a compound 'D', which on reaction with excess HI gives compound 'E'. Identify compounds 'A', 'B', 'C', 'D' and 'E' and write chemical equations involved.

### OR

### 33. (B) (a) Write chemical equations of the following reactions : 3 + 1 + 1 = 5

- (i) Phenol is treated with conc.  $HNO_3$
- (ii) Propene is treated with  ${\rm B_2H_6}$  followed by oxidation by  ${\rm H_2O_2/OH^-}.$

 $\mathbf{5}$ 

- (iii) Sodium t-butoxide is treated with  $CH_3Cl$ .
- (b) Give a simple chemical test to distinguish between butan-1-ol and butan-2-ol.
- (c) Arrange the following in increasing order of acid strength : phenol, ethanol, water



56/2/1 **731-1** 

~ 24 ~