	Marking Scheme
	Strictly Confidential
	(For Internal and Restricted use only)
	Senior School Examination, 2025
-	SUBJECT: MATHEMATICS (Q.P. CODE – 65/4/1)
<u>Gene</u>	eral Instructions: -
1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession.
	To avoid mistakes, it is requested that before starting evaluation, you must read and
-	understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
	examinations conducted, Evaluation done and several other aspects. Its leakage to
	the public in any manner could lead to derailment of the examination system and
	affect the life and future of millions of candidates. Sharing this policy/document to
	anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
3	be done according to one's own interpretation or any other consideration. The Marking
	Scheme should be strictly adhered to and religiously followed. However, while evaluating ,
	answers which are based on latest information or knowledge and/or are innovative,
	they may be assessed for their correctness otherwise and due marks be awarded to
	them. In class-XII, while evaluating the competency-based questions, please try to
	understand the given answer and even if reply is not from a marking scheme but
	correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking Scheme carries only suggested value points for the answers.
	These are Guidelines only and do not constitute the complete answer. The students can
	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each
5	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the
5	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero
5	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall
5	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual
	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
5	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark ($$) wherever answer is correct. For wrong answer CROSS 'X' be
	 These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression
	 These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common
6	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common mistake which evaluators are committing.
	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common mistake which evaluators are committing.
6	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common mistake which evaluators are committing.
6	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common mistake which evaluators are committing.
6	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common mistake which evaluators are committing. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
6 7 8	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common mistake which evaluators are committing. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly. If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
6	These are Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators. Evaluators will mark (√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives the impression that the answer is correct, and no marks are awarded. This is the most common mistake which evaluators are committing. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.

10	No marks to be deducted for the cumulative effect of an error. It should be penalized only
	once.
11	A full scale of marks (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner must necessarily do evaluation work for full working hours, i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books
	per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced
40	syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the Examiner in the past: -
	 Leaving answer or part thereof unassessed in an answer book.
	Giving more marks for an answer than assigned to it.
	Wrong totaling of marks awarded on an answer.
	• Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totaling on the title page.
	Wrong totaling of marks of the two columns on the title page.
	Wrong grand total.
	Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	• Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	Half or a part of the answer marked correct and the rest as wrong, but no marks
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be
	marked as cross (X) and awarded zero (0) Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or total error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, to uphold the prestige of all concerned, it is again
16	reiterated that the instructions be followed meticulously and judiciously. The Examiners should acquaint themselves with the guidelines given in the " Guidelines for
10	Spot Evaluation " before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
17	the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain a photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME SENIOR SECONDARY SCHOOL EXAMINATION 2024-25 MATHEMATICS (Code-041)

[Paper Code: 65/4/1]

	[Paper Code: 65/4/1]	1
Q. No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION - A	
	Questions no. 1 to 18 are multiple choice questions (MCQs) of 1 mark each .	
Q1.	The principal value of $\sin^{-1}\left(\sin\left(-\frac{10\pi}{3}\right)\right)$ is :	
	(A) $-\frac{2\pi}{3}$ (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$	
	(C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$	
A1.	(C) $\frac{\pi}{3}$	1
Q2.	If A and B are square matrices of same order such that $AB = A$ as $BA = B$, then $A^2 + B^2$ is equal to :	nd
	(A) A + B (B) BA	
	(C) $2(A + B)$ (D) $2BA$	
A2.	(A) A + B	1
Q3.	For real x, let $f(x) = x^3 + 5x + 1$. Then :	1
	(A) f is one-one but not onto on R	
	(B) f is onto on R but not one-one	
	(C) f is one-one and onto on R	
	(D) f is neither one-one nor onto on R	
A3.	(C) f is one-one and onto on R	1
Q4.	If $y = \sin^{-1} x$, then $(1 - x^2) \frac{d^2 y}{dx^2}$ is equal to :	
	(A) $x \frac{dy}{dx}$ (B) $-x \frac{dy}{dx}$	
	(A) $x \frac{dy}{dx}$ (B) $-x \frac{dy}{dx}$ (C) $x^2 \frac{dy}{dx}$ (D) $-x^2 \frac{dy}{dx}$	
A4.	(A) $x \frac{dy}{dx}$	1

MS_XII_Mathematics_041_65/4/1_2024-25

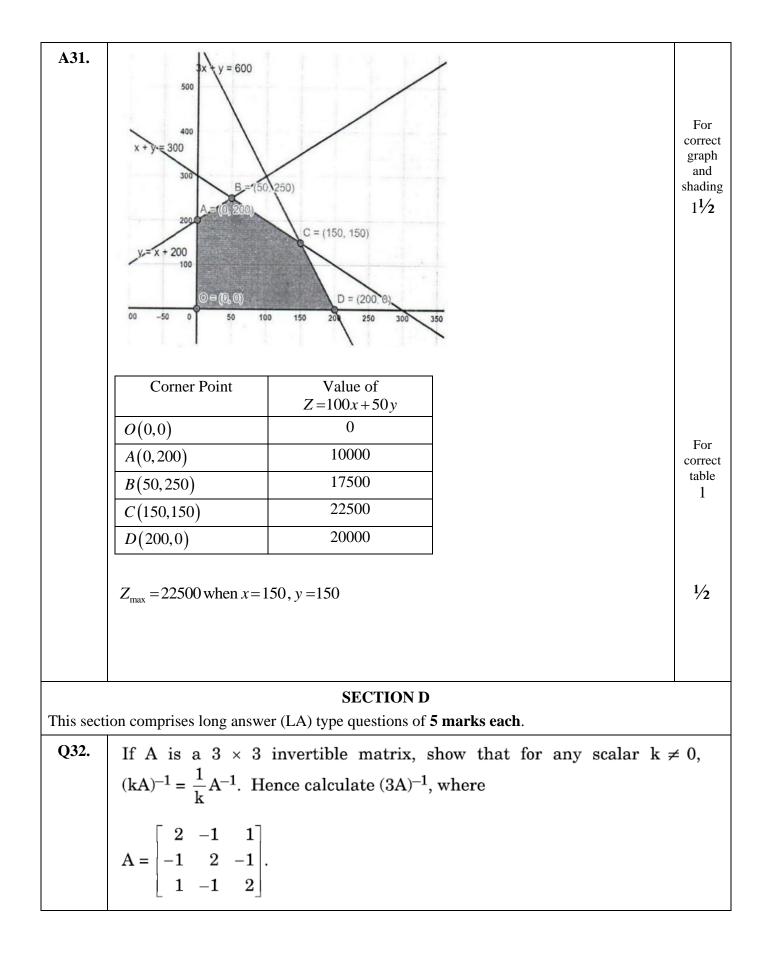
Q5.	The values of λ so that $f(x) = s$ values of x are :	$\sin x - \cos x - \lambda x + C$ decreases for all 1	eal
	(A) $1 < \lambda < \sqrt{2}$	$(B) \lambda \geq 1$	
	(A) $1 < \lambda < \sqrt{2}$ (C) $\lambda \ge \sqrt{2}$	(D) $\lambda < 1$	
A5.	(C) $\lambda \ge \sqrt{2}$		1
Q6.	If P is a point on the line seg y-coordinate of P is 4, then its	gment joining $(3, 6, -1)$ and $(6, 2, -2)$ z-coordinate is :	and
	(A) $-\frac{3}{2}$	(B) 0	
	(C) 1	(D) $\frac{3}{2}$	
A6.	(A) $-\frac{3}{2}$		1
Q7.	If M and N are square matri MN = mI, then det (N) is equ	ices of order 3 such that $det(M) = m$ al to :	and
	(A) – 1	(B) 1	
	$(C) - m^2$	$(D) m^2$	
A7.	(D) m ²		1
Q8.	$If \ f(x) = \begin{cases} 3x - 2, & 0 < x \le 1 \\ 2x^2 + ax, & 1 < x < 2 \end{cases}$	is continuous for $x \in (0, 2)$, then a is equivalent to the second seco	lual
	to :		
	(A) -4 (C) -2	(B) $-\frac{7}{2}$	
	(C) – 2	(D) – 1	
A8.	(D) – 1		1

Q9.	If $f: N \to W$ is defined as	
	$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases},$	
	then f is :	
	(A) injective only (B) surjective only	
	(C) a bijection (D) neither surjective nor injective	,
A9.	(B) surjective only	1
Q10.	The matrix $\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & -7 \\ 2 & 7 & 0 \end{bmatrix}$ is a :	
	(A) diagonal matrix (B) symmetric matrix	
	(C) skew symmetric matrix (D) scalar matrix	
A10.	(C) skew symmetric matrix	1
Q11.	If the sides AB and AC of \triangle ABC are represented by vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ respectively, then the length of the median through A on BC is:	
	(A) $2\sqrt{2}$ units (B) $\sqrt{18}$ units	
	(C) $\frac{\sqrt{34}}{2}$ units (D) $\frac{\sqrt{48}}{2}$ units	
Q11.	(C) $\frac{\sqrt{34}}{2}$ units	1
Q12.	The function f defined by	
	$f(x) = \begin{cases} x, & \text{if } x \leq 1 \\ 5, & \text{if } x > 1 \end{cases}$	
	is not continuous at :	
	(A) $x = 0$ (B) $x = 1$	
	(C) $x = 2$ (D) $x = 5$	
A12.	(B) x = 1	1

Q13.	If $f(x) = 2x + \cos x$, then $f(x)$:	
	(A) has a maxima at $x = \pi$ (B) has a minima at $x = \pi$	
	(C) is an increasing function (D) is a decreasing function	
A13.	(C) is an increasing function	1
Q14.	$\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} dx \text{ is equal to :}$	
	(A) $2(\sin x + x \cos \alpha) + C$ (B) $2(\sin x - x \cos \alpha) + C$	
	(C) $2(\sin x + 2x\cos \alpha) + C$ (D) $2(\sin x + \sin \alpha) + C$	
A14.	(A) $2(\sin x + x \cos \alpha) + C$	1
Q15.	The value of $\int_{0}^{1} \frac{dx}{e^{x} + e^{-x}}$ is :	
	(A) $-\frac{\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\tan^{-1} e - \frac{\pi}{4}$ (D) $\tan^{-1} e$	
	(C) $\tan^{-1} e^{-\frac{\pi}{4}}$ (D) $\tan^{-1} e^{-\frac{\pi}{4}}$	
A15.	(C) $\tan^{-1} e^{-\frac{\pi}{4}}$	1
Q16.	The order and degree of the differential equation	
	$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x\sin\left(\frac{dy}{dx}\right) \text{ are }:$	
	(A) order 2, degree 2 (B) order 2, degree 1	
	(C) order 2, degree not defined (D) order 1, degree not defined	
A16.	(C) order 2, degree not defined	1
Q17.	The area of the region enclosed by the curve $y = \sqrt{x}$ and the lines $x = and x = 4$ and x-axis is :	= 0
	(A) $\frac{16}{9}$ sq. units (B) $\frac{32}{9}$ sq. units	
	(C) $\frac{16}{3}$ sq. units (D) $\frac{32}{3}$ sq. units	
A17.	(C) $\frac{16}{3}$ sq. units	1

Q18.	The corner points of the feasible region of a Linear Programmin	a
Q 200	The corner points of the feasible region of a Linear Programmin Problem are $(0, 2)$, $(3, 0)$, $(6, 0)$, $(6, 8)$ and $(0, 5)$. If $Z = ax + by$; $(a, b > 0)$	
	be the objective function, and maximum value of Z is obtained at $(0, 2)$	
	and $(3, 0)$, then the relation between a and b is :	-)
	(C) $b = 6a$ (D) $3a = 2b$	
A18.	(D) $3a = 2b$	1
stateme	ons number 19 and 20 are Assertion and Reason based questions. Two ents are given, one labelled Assertion (A) and the other labelled Reason lect the correct answer from the codes (A), (B), (C) and (D) as given below.	
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	
	 Both Assertion (A) and Reason (R) are true, but Reason (R) is <i>not</i> the correct explanation of the Assertion (A). 	
	 C) Assertion (A) is true, but Reason (R) is false. (D) Assertion (A) is false, but Reason (R) is true. 	
Q19.	Assertion (A): If A and B are two events such that $P(A \cap B) = 0$, then A and B are independent events.	
	Reason(R): Two events are independent if the occurrence of one does not effect the occurrence of the other.	3
A19.	(D) Assertion (A) is false, but Reason (R) is true.	1
Q20.	Assertion (A): In a Linear Programming Problem, if the feasible region is empty, then the Linear Programming Problem has molution.	
	Reason (R) : A feasible region is defined as the region that satisfies a the constraints.	11
A20.	(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is <i>not</i> the correct explanation of the Assertion (A).	1
	SECTION B	
This sect	SECTION B ion comprises very short answer (VSA) type questions of 2 marks each.	
This sect Q21.		d
	ion comprises very short answer (VSA) type questions of 2 marks each .	d
	ion comprises very short answer (VSA) type questions of 2 marks each . Let A and B be two square matrices of order 3 such that det (A) = 3 an	d 1

Q22.	(a) Find the least value of 'a' so that $f(x) = 2x^2 - ax + 3$ is an increa	sing
	function on [2, 4].	0
	OR	
	(b) If $f(x) = x + \frac{1}{x}$, $x \ge 1$, show that f is an increasing function.	
A22.(a)	$f(x) = 2x^2 - ax + 3 \Longrightarrow f'(x) = 4x - a$	1⁄2
	Now $2 \le x \le 4 \Longrightarrow 8 - a \le 4x - a \le 16 - a$	1
	For f to be an increasing function, $f'(x) \ge 0$	
	$\Rightarrow 8 - a \ge 0 \Rightarrow a \le 8$	1⁄2
	\therefore Least value of <i>a</i> does not exist.	
	OR	
A22.(b)	$f(x) = x + \frac{1}{x} \Longrightarrow f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$	1
	Now $\frac{x^2 - 1}{x^2} \ge 0$ for all $x \ge 1$	1/2
	$\Rightarrow f'(x) \ge 0 \Rightarrow f \text{ is an increasing function.}$	1⁄2
Q23.	(a) Simplify $\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$.	
	OR	
	(b) Find domain of $\sin^{-1}\sqrt{x-1}$.	
A23.(a)	Put $x = \tan \theta \Longrightarrow \theta = \tan^{-1} x$	1⁄2
	Now $\sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)$	
	$=\sin^{-1}\left(\frac{\tan\theta}{\sec\theta}\right)=\sin^{-1}(\sin\theta)$	1
	$=\theta=\tan^{-1}x$	1⁄2
	OR	
A23.(b)	Here $-1 \le \sqrt{x-1} \le 1$	1
	$\Rightarrow 0 \le x - 1 \le 1 \Rightarrow 1 \le x \le 2$	
	Hence, domain is $x \in [1,2]$	1


Q24.	Calculate the area of the region bounded by the curve $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the	
	x-axis using integration.	
A24.	$A = 2 \times \frac{2}{3} \int_{0}^{3} \sqrt{9 - x^{2}} dx$ $= \frac{4}{3} \left[\frac{x}{2} \sqrt{9 - x^{2}} + \frac{9}{2} \sin^{-1} \left(\frac{x}{3} \right) \right]_{0}^{3}$ $= \frac{4}{3} \left[\left(0 + \frac{9}{2} \sin^{-1} 1 \right) - 0 \right]$ $= 3\pi$ (½ for correction of the second s	rct figure) 1/2 1/2 1/2
Q25.	For the curve $y = 5x - 2x^3$, if x increases at the rate of 2 units/s, then he	ow
	fast is the slope of the curve changing when $x = 2$?	
A25.	$y = 5x - 2x^3$	
	$\text{Given}\frac{dx}{dt} = 2 \text{ units/s}$	1⁄2
	slope of the curve $=\frac{dy}{dx}=5-6x^2=m$	1⁄2
	$\frac{dm}{dt} = -12x\frac{dx}{dt} = -12x(2) = -24x$	1⁄2
	at $x = 2, \frac{dm}{dt} = -24(2) = -48$	1⁄2
	Hence, slope of curve is decreasing at the rate of 48	
T I . (1	SECTION C	
Q26.	ion comprises short answer (SA) type questions of 3 marks each .	-+ f
×=01	(a) If $f: \mathbb{R}^+ \to \mathbb{R}$ is defined as $f(x) = \log_a x$ (a > 0 and a $\neq 1$), prove th is a bijection.	ati
	(R ⁺ is a set of all positive real numbers.)	
	OR	
	$ \begin{array}{ll} (b) & \mbox{Let } A = \{1,2,3\} \mbox{ and } B = \{4,5,6\}. \mbox{ A relation } R \mbox{ from } A \mbox{ to } B \mbox{ is define } \\ & R = \{(x,y): x + y = 6, x \in A, y \in B\}. \end{array} $	d as
	(i) Write all elements of R.	
	 (ii) Is R a function ? Justify. (iii) Determine domain and range of R 	
	(iii) Determine domain and range of R.	

A26.(a)	$f(x) = \log_a x (a > 0, a \neq 1)$	
	Let $x_1, x_2 \in \mathbb{R}^+$ such that $f(x_1) = f(x_2)$	11/2
	$\Rightarrow \log_a x_1 = \log_a x_2$	1/2
	$\Rightarrow x_1 = x_2 \Rightarrow f \text{ is one-one.}$	
	Let $f(x) = y \Longrightarrow \log_a x = y \Longrightarrow a^y = x$	
	\therefore for every $y \in R$, there exists $x \in R^+$	11/2
	$\therefore f$ is onto.	172
	f is a bijection.	
	OR	
A26.(b)	$(i)R = \{(1,5), (2,4)\}$	1
	(ii) R is not a function as $3 \in A$ do not have an image in co-domain.	1
	(<i>iii</i>)Domain of $R = \{1, 2\}$, Range of $R = \{4, 5\}$	1
Q27.	(a) Find k so that	
	$\left[\frac{x^2 - 2x - 3}{x \neq -1} \right]$	
	$f(x) = \begin{cases} \frac{x^2 - 2x - 3}{x + 1}, & x \neq -1 \\ k, & x = -1 \end{cases}$	
	k, $x = -1$	
	is continuous at $x = -1$.	
	OR	
	(b) Check the differentiability of function $f(x) = x x at x = 0$.	
A27(a).	$\lim_{x \to -1} \frac{x^2 - 2x - 3}{x + 1} = \lim_{x \to -1} \frac{(x - 3)(x + 1)}{x + 1} = \lim_{x \to -1} (x - 3) = -4$	2
	Also, $f(-1) = k$	1⁄2
	as f is continuous, $k = -4$	1⁄2
	OR	
A27(b).	$f(x) = x x = \begin{cases} -x^2 & , x \le 0 \\ x^2 & , x > 0 \end{cases}$	1
	LHD = $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \to 0} \frac{-h^2 - 0}{-h} = 0$	1
	RHD = $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 - 0}{h} = 0$	1⁄2
	Since LHD = RHD, f is differentiable at $x = 0$	1⁄2

MS_XII_Mathematics_041_65/4/1_2024-25

$\begin{aligned} \int_{\pi/2}^{\pi} e^{x} \left(\frac{1-\sin x}{1-\cos x} \right) dx \\ \mathbf{A28.} & I = \int_{\pi/2}^{\pi} e^{x} \left(\frac{1-\sin x}{1-\cos x} \right) dx \\ &= \int_{\pi/2}^{\pi} e^{x} \left(\frac{1-2\sin \frac{x}{2}\cos \frac{x}{2}}{2\sin^{2} \frac{x}{2}} \right) dx \\ &= \int_{\pi/2}^{\pi} e^{x} \left(\frac{1-2\sin \frac{x}{2}\cos \frac{x}{2}}{2\sin^{2} \frac{x}{2}} \right) dx \\ &= \int_{\pi/2}^{\pi} e^{x} \left(\frac{1}{2} \csc e^{2} \frac{x}{2} - \cot \frac{x}{2} \right) dx \\ &\therefore I = - \left[e^{x} \cot \frac{x}{2} \right]_{\pi/2}^{\pi} \\ &= - \left[e^{\pi} \cot \frac{\pi}{2} - e^{\frac{\pi}{2}} \cot \frac{\pi}{4} \right] \\ &= e^{\frac{\pi}{2}} \end{aligned} $ $\begin{aligned} \mathbf{Q29.} \text{(a) Find the probability distribution of the number of boys in families having three children, assuming equal probability for a boy and a girl. \end{aligned}$	A28.
$I = \int_{\pi/2}^{\infty} e^{x} \left(\frac{1-\sin x}{1-\cos x} \right) dx$ $= \int_{\pi/2}^{\pi} e^{x} \left(\frac{1-2\sin \frac{x}{2}\cos \frac{x}{2}}{2\sin^{2} \frac{x}{2}} \right) dx$ $= \int_{\pi/2}^{\pi} e^{x} \left(\frac{1}{2} \csc e^{2} \frac{x}{2} - \cot \frac{x}{2} \right) dx$ $\therefore I = -\left[e^{x} \cot \frac{x}{2} \right]_{\pi/2}^{\pi}$ $= -\left[e^{\pi} \cot \frac{\pi}{2} - e^{\frac{\pi}{2}} \cot \frac{\pi}{4} \right]$ $= e^{\frac{\pi}{2}}$ (a) Find the probability distribution of the number of boys in families having three children, assuming equal probability for a boy and a girl.	A28.
$Q^{29}.$ $= \int_{\pi/2}^{\pi} e^{x} \left(\frac{1}{2} \cos ec^{2} \frac{x}{2} - \cot \frac{x}{2} \right) dx$ $= -\left[e^{x} \cot \frac{x}{2} \right]_{\pi/2}^{\pi}$ $= -\left[e^{\pi} \cot \frac{\pi}{2} - e^{\frac{\pi}{2}} \cot \frac{\pi}{4} \right]$ $= e^{\frac{\pi}{2}}$ $(a) Find the probability distribution of the number of boys in families having three children, assuming equal probability for a boy and a girl.$	
$ \begin{array}{c} \frac{\pi}{2} \langle \mathbf{q}^{2} & \mathbf{q}^{2} & \mathbf{q}^{2} \\ \vdots I = -\left[e^{x} \cot \frac{x}{2}\right]_{\pi/2}^{\pi} \\ = -\left[e^{\pi} \cot \frac{\pi}{2} - e^{\frac{\pi}{2}} \cot \frac{\pi}{4}\right] \\ = e^{\frac{\pi}{2}} \\ \end{array} $ $(a) Find the probability distribution of the number of boys in families having three children, assuming equal probability for a boy and a girl. $	
Q29. (a) Find the probability distribution of the number of boys in families having three children, assuming equal probability for a boy and a girl.	
Q29. (a) Find the probability distribution of the number of boys in families having three children, assuming equal probability for a boy and a girl.	
Q29. (a) Find the probability distribution of the number of boys in families having three children, assuming equal probability for a boy and a girl.	
having three children, assuming equal probability for a boy and a girl.	
	Q29.
OR	
(b) A coin is tossed twice. Let X be a random variable defined as number of heads minus number of tails. Obtain the probability distribution of X and also find its mean.	
A29.(a)Let X denote the random variable which counts the number of boys. $X = 0, 1, 2, 3$ $\frac{1}{2}$	A29.(a)
$P(\mathbf{D}_{1}) = P(\mathbf{C}; \mathbf{I}) = 1$	
$P(Boy) = P(Girl) = \frac{1}{2}$ Required Probability Distribution	
Kequited Flobability Distribution X 0123	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
OR	

A29.(b)	Possible values of X are $-2,0,2$	1/2
	X -2 0 2 P(X) $\frac{1}{4}$ $\frac{2}{4} = \frac{1}{2}$ $\frac{1}{4}$	11⁄2
	$Mean = \sum XP(X) = -2\left(\frac{1}{4}\right) + 0\left(\frac{1}{2}\right) + 2\left(\frac{1}{4}\right) = 0$	1
Q30.	Find the distance of the point (-1, -5, -10) from the point of intersection of the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{2} = z$.	n
A30.	$l_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$ Any point on l_1 is $(2\lambda + 1, 3\lambda + 2, 4\lambda + 3)$	
	$l_2: \frac{x-4}{5} = \frac{y-1}{2} = \frac{z-0}{1} = \mu$	1
	Any point on l_2 is $(5\mu + 4, 2\mu + 1, \mu)$ For point of intersection,	
	$2\lambda + 1 = 5\mu + 4, 3\lambda + 2 = 2\mu + 1$	
	Solving, $\lambda = \mu = -1$	1
	Since, $\lambda = \mu = -1$ satisfy $4\lambda + 3 = \mu$ \therefore Point of intersection is $(-1, -1, -1)$	1/2
	Now distance of $(-1, -5, -10)$ from $(-1, -1, -1)$ is:	/ -
	$\sqrt{(-1+1)^2 + (-1+5)^2 + (-1+10)^2} = \sqrt{97}$ units	1/2
Q31.	Solve the following Linear Programming Problem using graphical metho	d :
	Maximise $Z = 100x + 50y$	
	subject to the constraints $3x + y \le 600$	
	$3x + y \le 600$ $x + y \le 300$	
	$y \le x + 200$	
	$\mathbf{x} \ge 0, \mathbf{y} \ge 0$	

A32.	$\operatorname{Consider}(kA)\left(\frac{1}{k}A^{-1}\right) = k \cdot \frac{1}{k}\left(A \cdot A^{-1}\right) = I$	
	\Rightarrow kA and $\frac{1}{k}A^{-1}$ are inverse of each other.	1
	$\therefore (kA)^{-1} = \frac{1}{k}A^{-1}$	
	$\therefore (3A)^{-1} = \frac{1}{3}A^{-1}$	
	Here, $ A = 4 \neq 0$. $\therefore A^{-1}$ exists.	1
	$adjA = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$	2
	$\therefore A^{-1} = \frac{1}{ A } \cdot adjA = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$	1/2
	$\therefore (3A)^{-1} = \frac{1}{12} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$	1⁄2
Q33.	The relation between the height of the plant (y cm) with respect to exposure to sunlight is governed by the equation $y = 4x - \frac{1}{2}x^2$, where x is	
	the number of days exposed to sunlight.	
	(i) Find the rate of growth of the plant with respect to sunlight.	2
	(ii) In how many days will the plant attain its maximum height ?What is the maximum height ?	3
A33.	$(i) y = 4x - \frac{1}{2}x^2 \Longrightarrow \frac{dy}{dx} = (4 - x) \text{cm/day}$	2
	(ii) For maximum height, $\frac{dy}{dx} = 0 \Longrightarrow x = 4$ days	1
	as $\frac{d^2 y}{dx^2} < 0$, number of days = 4	1
	Now, Maximum height = $y(4) = 16 - \frac{1}{2}(16) = 8$ cm	1

Q34. (a) Find:

$$\int \frac{\cos x}{(4+\sin^2 x)(5-4\cos^2 x)} dx$$
OR
(b) Evaluate:

$$\int_{0}^{\pi} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$
A34.(a)
$$I = \int \frac{\cos x}{(4+\sin^2 x)(5-4\cos^2 x)} dx$$

$$= \int \frac{\cos x}{(4+\sin^2 x)(1+4\sin^2 x)} dx$$
1 sin $x = t$ gives $\frac{1}{2}$

$$I = \int \frac{dt}{(4+t^2)(1+4t^2)}$$

$$= -\frac{1}{15} \int \frac{dt}{4+t^2} + \frac{4}{15} \int \frac{dt}{1+4t^2}$$
 (: using Partial Fraction) 2

$$= -\frac{1}{30} \tan^{-1} (\frac{t}{2}) + \frac{2}{15} \tan^{-1} (2\sin x) + C$$
1
OR

A34.(b)	$I = \int_{0}^{\pi} \frac{dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x}$	
	$=2\int_{0}^{\pi/2} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$	1⁄2
	$=2\int_{0}^{\pi/2} \frac{\sec^2 x}{a^2 + b^2 \tan^2 x} dx$	1
	$\tan x = t$ gives	1/2
	$I=2\int_{0}^{\infty}\frac{dt}{a^2+b^2t^2}$	1⁄2
	$=\frac{2}{b^2}\cdot\frac{b}{a}\tan^{-1}\left(\frac{bt}{a}\right)\Big]_0^\infty$	11⁄2
	$=\frac{\pi}{ab}$	1
Q35 .	(a) Show that the area of a parallelogram whose diagonals	are
	represented by \overrightarrow{a} and \overrightarrow{b} is given by $\frac{1}{2} \overrightarrow{a} \times \overrightarrow{b} $. Also find	
	2	
	area of a parallelogram whose diagonals are $2\hat{i} - \hat{j} + \hat{k}$ a	and
	$\hat{i} + 3\hat{j} - \hat{k}$.	
	OR	
	(b) Find the equation of a line in vector and cartesian form wh	ich
	passes through the point $(1, 2, -4)$ and is perpendicular to	${ m the}$
	lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$, and	
	$\vec{r} = 15\hat{i} + 29\hat{j} + 5\hat{k} + \mu(3\hat{i} + 8\hat{j} - 5\hat{k}).$	
A35.(a)	Let $ABCD$ be the parallelogram with diagonals $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BD} = \overrightarrow{b}$.	
	$\therefore \overrightarrow{AB} = \frac{1}{2} (\vec{a} - \vec{b}) \text{ and } \overrightarrow{AD} = \frac{1}{2} (\vec{a} + \vec{b})$	1⁄2
	Area of $ABCD$	
	$= \left \overrightarrow{AB} \times \overrightarrow{AD} \right $	
	$= \left \frac{1}{2} \left(\vec{a} - \vec{b} \right) \times \frac{1}{2} \left(\vec{a} + \vec{b} \right) \right $	1⁄2
	$=\frac{1}{4} \left \vec{a} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} - \vec{b} \times \vec{b} \right $	1⁄2
1		

MS_XII_Mathematics_041_65/4/1_2024-25

$$\begin{vmatrix} =\frac{1}{4} |\vec{a} \times \vec{b} + \vec{a} \times \vec{b} | & (\because \vec{a} \times \vec{a} = \vec{0}) \\ =\frac{1}{4} |2(\vec{a} \times \vec{b})| \\ =\frac{1}{2} |\vec{a} \times \vec{b} | & y_{2} \\ \text{Given } \vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \ \vec{b} = \hat{i} + 3\hat{j} - \hat{k} \\ \text{Area of parallelogram} =\frac{1}{2} |\vec{a} \times \vec{b}| & y_{2} \\ \text{Now } \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 3 & -1 \end{vmatrix} = -2\hat{i} + 3\hat{j} + 7\hat{k} & 2 \\ \vec{a} \times \vec{b} = \sqrt{62} & y_{2} \\ \text{Area of parallelogram} =\frac{1}{2} \sqrt{62} & y_{3} \\ \text{Area of parallelogram} =\frac{1}{2} \sqrt{62} & y_{4} \\ \text{Area of paralelogram} =\frac{1}{2} \sqrt{62} & y_{4} \\ \text{Area$$

nis sect	ction comprises 3 case study-based questions of 4 marks each .	
Q36.	Some students are having a misconception while comparing decime example, a student may mention that $78.56 > 78.9$ as $7856 > $ order to assess this concept, a decimal comparison test was admit to the students of class VI through the following que In the recently held Sports Day in the school, 5 students participation javelin throw competition. The distances to which they have thr javelin are shown below in the table :	789. In nistered estion : ated in a
	Name of student Distance of javelin (in meters)	
	Ajay 47·7	
	Bijoy 47·07	
	Kartik 43.09	
	Dinesh 43·9	
	Devesh 45·2	
	 comparison and the rest do not have the misconception. 80% of students having misconception answered Bijoy as the correct answer the paper. 90% of the students who are identified with not ha misconception, did not answer Bijoy as their answer. On the basis of the above information, answer the following questions 	er in ving
	(i) What is the probability of a student not having misconception	
	still answers Bijoy in the test ?	1
	(ii) What is the probability that a randomly selected student answ Bijoy as his answer in the test ?	wers 1
	(iii) (a) What is the probability that a student who answered as H is having misconception ? OR	3ijoy <i>2</i>
	(iii) (b) What is the probability that a student who answered as I is amongst students who do not have the misconception ?	Bijoy 2
A36.	Total (100%)	
	Misconception (40%) Proficient (60%) Misconception (40%) (No Misconception Answer Do not Bijoy (80%) answer as	n) not

Let E_1 : Student has a misconception	
E_2 :Student does not have misconception	
A: Student answered Bijoy as correct	
$\therefore P(E_1) = \frac{40}{100}, P(E_2) = \frac{60}{100}$	
$P(A E_1) = \frac{80}{100}, P(A E_2) = \frac{10}{100}$	
$P(\bar{A} E_1) = \frac{20}{100}, P(\bar{A} E_2) = \frac{90}{100}$	
$(i)P(A E_2) = \frac{10}{100} \text{ or } \frac{1}{10}$	1
$(ii)P(A) = P(E_1)P(A E_1) + P(E_2)P(A E_2)$	
$=\frac{40}{100}\times\frac{80}{100}+\frac{60}{100}\times\frac{10}{100}$	
$=\frac{38}{100} \text{ or } \frac{19}{50}$	1
$(iii)(a)P(E_1 A) = \frac{P(E_1)P(A E_1)}{P(A)}$	
$=\frac{\frac{40}{100}\times\frac{80}{100}}{\frac{38}{100}}=\frac{16}{19}$	2
$(iii)(b)P(E_2 A) = \frac{\frac{100 \text{ or }}{P(E_2)P(A E_2)}}{P(A)}$	
$=\frac{\frac{60}{100} \times \frac{10}{100}}{\frac{38}{100}} = \frac{3}{19}$	2

Q37.	An engineer is designing a new metro rail network in a city.	
	Initially, two metro lines, Line A and Line B, each consisting of multiple	
	stations are designed. The track for Line A is represented by	
	$l_1: \frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-3}{4}$, while the track for Line B is represented by	
	$l_2: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z+2}{-3}.$	
	Based on the above information, answer the following questions : (i) Find whether the two metro tracks are parallel.	1
	 (i) Find whether the two metro tracks are parallel. (ii) Solar panels are to be installed on the rooftop of the metro stations. Determine the equation of the line representing the placement of solar panels on the rooftop of Line A's stations, given that panels are to be positioned parallel to Line A's track (l₁) and pass through 	1
	the point $(1, -2, -3)$. (iii) (a) To connect the stations, a pedestrian pathway perpendicular	1
	to the two metro lines is to be constructed which passes through point (3, 2, 1). Determine the equation of the pedestrian walkway.	2
	OR (iii) (b) Find the shortest distance between Line A and Line P	9
	(iii) (b) Find the shortest distance between Line A and Line B.	2
A37.	$l_1: \frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-3}{4} ; l_2: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z+2}{-3}$	
	(i) Drs of l_1 are <3, -2, 4>, drs of l_2 are <2, 1, -3>	
	as drs are not proportional, hence l_1 is not parallel to l_2 .	1
	(<i>ii</i>) Equations of line parallel to l_1 and passing through $(1, -2, -3)$ is	
	$\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z+3}{4} \text{ or } \vec{r} = (\hat{i} - 2\hat{j} - 3\hat{k}) + \lambda (3\hat{i} - 2\hat{j} + 4\hat{k})$	1

	$\rightarrow \rightarrow$	
	$(iii)(a)$ The pathway is perpendicular to l_1 and l_2 It is parallel to $\vec{b_1} \times \vec{b_2}$	
	$\vec{l} \vec{l} $	
	$\vec{b} = \vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -2 & 4 \\ 2 & 1 & -3 \end{vmatrix} = 2\hat{i} + 17\hat{j} + 7\hat{k}$	1
	$\therefore \text{Equation of pathway is } \vec{r} = \left(3\hat{i} + 2\hat{j} + \hat{k}\right) + \lambda \left(2\hat{i} + 17\hat{j} + 7\hat{k}\right)$ OR $(iii)(b) \vec{a}_1 = 2\hat{i} - \hat{j} + 3\hat{k}, \vec{a}_2 = \hat{i} + 3\hat{j} - 2\hat{k}$	1
	$(iii)(b) \vec{a}_1 = 2\hat{i} - \hat{j} + 3\hat{k}, \vec{a}_2 = \hat{i} + 3\hat{j} - 2\hat{k}$	
	$\vec{b}_1 = 3\hat{i} - 2\hat{j} + 4\hat{k}$, $\vec{b}_2 = 2\hat{i} + \hat{j} - 3\hat{k}$	
	$d = \frac{\left (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) \right }{\left \vec{b}_1 \times \vec{b}_2 \right }$	
	$\left \left(-\hat{i} + 4\hat{j} - 5\hat{k} \right) \cdot \left(2\hat{i} + 17\hat{j} + 7\hat{k} \right) \right $	
	$=\frac{\left(-\hat{i}+4\hat{j}-5\hat{k}\right)\cdot\left(2\hat{i}+17\hat{j}+7\hat{k}\right)}{\sqrt{4+289+49}}$	1
	$=\frac{31}{\sqrt{342}}$	1
Q38.	During a heavy gaming session, the temperature of a student's laptop	
	processor increases significantly. After the session, the processor begins	
	to cool down, and the rate of cooling is proportional to the difference	
	between the processor's temperature and the room temperature ($25^{\circ}C$).	
	Initially the processor's temperature is 85°C. The rate of cooling is	
	defined by the equation $\frac{d}{dt}(T(t)) = -k(T(t) - 25)$,	
	where $T(t)$ represents the temperature of the processor at time t (in	
	minutes) and k is a constant.	
	Based on the above information, answer the following questions :	
	(i) Find the expression for temperature of processor, $T(t)$ given that $T(0) = 85^{\circ}C$.	2
	(ii) How long will it take for the processor's temperature to reach	
		2

A38.
$$(i) \frac{dT}{dt} = -k(T-25)$$

$$\Rightarrow \frac{dT}{T-25} = -k dt$$

$$\Rightarrow \int \frac{dT}{T-25} = -k \int dt$$

$$\Rightarrow \log|T-25| = -kt+C \quad ...(a)$$

$$When t = 0, T = 85$$

$$\Rightarrow \log 60 = C$$

$$Using in equation (a), \log|T-25| = -kt + \log 60 \quad ...(b)$$

$$(ii) When k = 0.03, \log|T-25| = -0.03t + \log 60$$

$$\Rightarrow \log \left| \frac{T-25}{60} \right| = -0.03t$$

$$\Rightarrow T-25 = 60.e^{-0.03t}$$

$$When T = 40, t = t_1$$

$$\Rightarrow \frac{15}{60} = e^{-0.03t_1}$$

$$\Rightarrow e^{-0.03t_1} = \frac{1}{4} \Rightarrow -0.03t_1 = -\log 4$$

$$\Rightarrow t_1 = \frac{\log 4}{0.03} = \frac{1.3863}{0.03} = 46.21 \text{ m}$$