Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2025 SUBJECT PHYSICS (042) (PAPER CODE 55/7/1)

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession.
	To avoid mistakes, it is requested that before starting evaluation, you must read and
	understand the spot evaluation guideline es carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
	examinations conducted, Evaluation done and several other aspects. Its' leakage to
	public in any manner could lead to derailment of the examination system and affect
	the life and future of millions of candidates. Sharing this policy/document to anyone,
	publishing in any magazine and printing in News Paper/Website etc may invite action
	under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
	be done according to one's own interpretation or any other consideration. Marking Scheme
	should be strictly adhered to and religiously followed. However, while evaluating,
	answers which are based on latest information or knowledge and/or are innovative,
	they may be assessed for their correctness otherwise and due marks be awarded to
	them. In class-X, while evaluating two competency-based questions, please try to
	understand given answer and even if reply is not from marking scheme but correct
	competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers
	These are in the nature of Guidelines only and do not constitute the complete answer. The
	students can have their own expression and if the expression is correct, the due marks
	should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each
	evaluator on the first day, to ensure that evaluation has been carried out as per the
	instructions given in the Marking Scheme. If there is any variation, the same should be zero
	after deliberation and discussion. The remaining answer books meant for evaluation shall
	be given only after ensuring that there is no significant variation in the marking of
	individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be
	marked. Evaluators will not put right (\checkmark)while evaluating which gives an impression that
	answer is correct and no marks are awarded. This is most common mistake which
	evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks
	awarded for different parts of the question should then be totaled up and written in the left-
	hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and
	encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks
	should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only
	once.
11	A full scale of marks 0-70 (example 0 to 80/70/60/50/40/30 marks as given in Question
	Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per
	day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced
	syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past:-
	1. Leaving answer or part thereof unassessed in an answer book.
	2. Giving more marks for an answer than assigned to it.
	3. Wrong totaling of marks awarded on an answer. 4. Wrong transfer of marks from the inside pages of the answer book to the title page
	 Wrong question wise totaling on the title page.
	6. Wrong totaling of marks of the two columns on the title page.
	7. Wrong grand total.
	8. Marks in words and figures not tallying/not same.
	9. Wrong transfer of marks from the answer book to online award list.
	10. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	11. Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should
	be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all
	concerned, it is again reiterated that the instructions be followed meticulously and
	judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines
	for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME : PHYSICS (042)				
	CODE: 55/7/1			
Q.NO.	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL MARKS	
	SECTION- A			
1.	(A) 250 V	1	1	
2.	(C) 16/3 Ω	1	1	
3.	(A) BA sin α	1	1	
4.	(A) 1/200 s	1	1	
5.	(C) capacitive and inductive respectively	1	1	
6.	(B) 0.2 mV	1	1	
7.	$(D)\left[ML^{2}T^{-2}A^{-2}\right]$	1	1	
8.	(B) $3.20 \times 10^{14} \text{Hz}$	1	1	
9.	(C) holes and few electrons	1	1	
10.	(A) n=4 to n=3	1	1	
11.	(A) Both the potential barrier height and width of depletion layer decrease.	1	1	
12.	(C) same neutron number but different atomic number.	1	1	
13.	(D) Both Assertion (A) and Reason (R) are false.	1	1	
14.	(C) Assertion(A) is true and Reason(R) is false.	1	1	
15.	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is not the correct explanation of Assertion(A)	1	1	
16	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is	1	1	
10.	not the correct explanation of Assertion(A)	1	1	
	SECTION- B			
17.	Showing variation graphically (a)Terminal voltage with resistance R 1 (b)Current supplied by cell with resistance R 1			
		1	2	
	$\rightarrow R$		2	

18.			
	(a) Deducing for		
	(a)Size 1		
	(b)Location of the image produced by convex mirror I		
	Let, u= nf		
	From the Mirror formula,		
	$\frac{1}{1+1} = \frac{1}{1}$		
	v u f	1/2	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$		
	v f u		
	$=\frac{1}{c}+\frac{1}{c}$		
	I NI nf		
	$V = \frac{m}{n+1}$		
	$n = +ve$ $\therefore v < f$	1/2	
	-v 1	/ =	
	m = - =	1⁄2	
	m is always positive & less than 1.	1⁄2	
	Note: Award full credit if correctly concluded by any other		
	method.		
	OR		
	(b) Finding the nature & focal length of lens $1\frac{1}{2}$		
	Stating answer for changing thickness $\frac{1}{2}$		
	$\frac{1}{1} - \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$	14	
	$f f_1 f_2 f_3$	72	
	1 - 1 - 1 - 1 - 1		
	$\frac{12}{12} - \frac{10}{10} - \frac{15}{15} + \frac{1}{f_3}$		
	1 - 5 - 6 + 4		
	f_{3}^{-} 60		
	$f_3 = 20 cm$	1/2	
		, 2	
	Nature: Convex	1⁄2	
	Yes	1⁄2	2
19.			
	Difference between Interference & Diffraction patterns 1		
	Reason 1		

	Interference pattern Diffraction pattern		
	1. The interference pattern has a number of equally spaced bright and dark bands.1. The diffraction pattern has a central bright maximum which is twice as wide as the other maxima.	1	
	 2. The interference pattern is obtained by superposing two waves originating from the two narrow slits. 3. The maximas are of same intensity. 2. The diffraction pattern is obtained by superposition of a continuous family of waves originating from each point on a single slit. 3. The maximas are of same intensity. 		
	(Any two differences) The light wave coming out of two independent source of light will not have constant phase with time. Alternatively: Two sodium lamps are incoherent source of light.	1	2
20.	Drawing Energy band diagram of n type semiconductor $\frac{1}{2}$ p type semiconductor $\frac{1}{2}$ Showing donor/acceptor energy level $\frac{1}{2}+\frac{1}{2}$ $\frac{1}{2}$ \frac	1+1	2
21.	Explaining energy produced in stars1Two examples of nuclear reactions involved $\frac{1}{2}+\frac{1}{2}$ Energy is produced in stars due to Nuclear fusion.Two lighter nuclei fuse to form a heavier nucleus which is more stable, hence energy is released.Alternatively: Due the difference in masses in reactants and products, mass is converted into energy. Hence energy is released.	1/2 1/2	

	${}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{2}_{1}He + e^{+} + \nu$ ${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{2}He + {}^{1}_{0}n$ ${}^{3}_{2}He + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + {}^{1}_{1}H + {}^{1}_{1}H$ Any two above equation. SECTION C	1/2+ 1/2	2
22.	Calculating the current through cells A, B and C 3		
	$ \begin{array}{c} 2V & 5\mathcal{L} \\ \downarrow & & & \\ \downarrow & & \\ \downarrow & & \\ \downarrow & & \\ \downarrow & \\$	1⁄2	
	In loop ABEFA, $5-3-5I_1-I=0$	1/2	
	$2 = 5I_{1} + I(1)$ In loop CBEDC, $2 - 3 - 5I_{1} + 5I - 5I_{1} = 0$ $-1 = 10I_{1} - 5I(2)$ Solving equation (1) and (2)	1⁄2	
	$I = \frac{5}{7}A$ in arm AF/through the cell of 5V(A)	1/2	
	$I_1 = \frac{9}{35}A$ in arm BE/through the cell of 3V(B)	1/2	
	$I - I_1 = \frac{16}{35}A$ in arm CD/through the cell of 2V(C)	1/2	3
23.	(a) (i)Writing Biot-Savart's Law in vector form 1 (ii)Finding magnitude & direction of net magnetic field at centre of two current carrying coils 2		
	(i) $\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I(dl \times r)}{r^3}$	1	
	(ii) $B_{1} = \frac{\mu_{0}I}{2R}$ $B_{2} = \frac{\mu_{0}\sqrt{3}I}{2R}$ $B = \sqrt{B_{1}^{2} + B_{2}^{2}}$	1/2 1/2	
	$\therefore B = \frac{\mu_0 I}{2R} \sqrt{1+3} \qquad \qquad$		

	$A \xrightarrow{L} D \xrightarrow{R} A \xrightarrow{L} D \xrightarrow{L} A \xrightarrow{L} $		
	If the plane of the current carrying coil makes an angle of with		
	the magnetic field \vec{r}		
	$F_{DA} = -F_{Bc}$ (cancel each other) Force on the arm DC is into the plane of the paper	1/2	
	Force on the arm AB is out of the plane of the paper.		
	$ F_{AB} = IbB$ Since forces are equal & opposite so net force = 0	1/2	
	Both of them form a couple and magnitude of torque acting on the coil is		
	τ =either force ×perpendicular distance between the two forces. $\tau = IbB \times l \sin \theta$ $= IAB \sin \theta$	1⁄2	
	$\vec{\tau} = I\vec{A}S\vec{B}$	1/2	3
24	$\vec{\tau} = \vec{m} \times \vec{B}$	72	5
24.	(a)Stating Faraday's law of electromagnetic Induction 1		
	Explaining the role of negative sign 1 (b)Explaining consistency of Lenz law with conservation		
	of energy 1		
	(a) The magnitude of induced emf in a circuit is equal to the time rate of change of magnetic flux	1	
	Mathematically, $e = -\frac{d\Phi}{dt}$	1	
	Negative sign indicates that the direction of induced emf and hence induced current in closed loop opposes its cause.	1	
	(b) When magnet is moved closer/away from the loop, same/ opposite pole is developed on the approaching face of the loop. So, mechanical work is required to move a magnet which gets	1	

	converted into electrical energy which is consistent with law of		
	conservation of energy.		
	N		
			3
25.	(Note: Please do not deduct marks for not snowing figures)		
	(a)Similarity & dissimilarity between conduction &		
	displacement current 1+1		
	(b)Explaining existence of em wave in free space 1		
	(a) <u>Similarity</u>		
	Both give rise to magnetic field.	1	
	<u>Dissimilarity(any one)</u>		
	• Conduction current is due to flow of charges in the conductor		
	 Displacement current arises due to change in electric 	1	
	field/ time varying electric flux.		
	(b) A magnetic field, changing with time, gives rise to an electric		
	field. Then, an electric field changing with time gives rise to a magnetic field and is a consequence of the displacement current		
	being a source of a magnetic field. Thus, time- dependent electric	1	
	and magnetic fields give rise to each other and hence em wave is		
	generated.		
	(Note: Please award $\frac{1}{2}$ mark of this part if a child writes the		
	expression only)		
	$\oint \vec{B} \cdot \vec{dl} = \mu_0 I_c + \mu_0 \varepsilon_0 \frac{d\Phi_e}{dt}$		3
26.	J dt		
	(a)Defining work function ¹ / ₂		
	Determining the value of work function from graph 1		
	(b)Calculating wavelength of light $1\frac{1}{2}$		
	Minimum energy required by an electron to escape from metal	1/2	
	surface.	-	
	The intercept on the y axis for a graph between stopping		
	potential & frequency gives $\frac{\phi_0}{e}$.		

		0	0
	Since energy in the orbit $E_n = \frac{-e^2}{8\pi\epsilon}r$		
	$-me^4$		
	Using eq (3) $E_n = \frac{-\pi R}{8n^2 \epsilon_n^2 h^2}$	1/2	
		/ =	
	or $E_n \propto \frac{1}{n^2}$		3
28.			
	Explaining the formation of		
	depletion layer and potential barrier 1+1		
	Feature of junction diode for its use as rectifier 1		
	When an electron diffuses from n-side to n-side it leaves behind		
	an ionized donor on n side.		
	Similarly when a hole diffuses from p-side to n-side, it leaves		
	behind an ionized acceptor on p side.		
	This space charge region consisting of immobile ions on either	1	
	As diffusion process continues, width of depletion layer	1	
	increases and consequently strength of electric field increases		
	across the junction and thus the drift current.		
	The potential that prevents the movement of electron from n	1	
	region into p region is called potential barrier.		
	Electron drift \longrightarrow		
	p ⊖⊖⊕⊕ n		
	0000		
	Hole diffusion \longrightarrow Depletion region		
	← Hole drift		
	(Note: Please award full credit of formation of depletion		
	layer, even il a student draws above diagram)		
	Diode allows current to pass only when it is forward biased as	1	
	resistance is small, whereas in reverse bias, its resistance is very	1	
	large.		3
	Alternatively: Diode is unidirectional.		
29.	(i) (D) 1	1	
	(ii) (C) 3.75×10^6	1	
	(iii) (B) 500° C	1	
	(iv) (a) (D) I decreases and II is almost constant	1	
	OR		4
	(b) (D) All I, II and III change		т
30.	(i) (A) $1/\sqrt{n^2-1}$	1	
	(ii) (a) (B) 1.4	1	
	OR		

	(b) (D) increase by 19%.		
	(iii) (C) First real and then virtual	1	
	(iv) (A) 10cm	1	4
	SECTION- E		
31.	(a) (i) Finding the new value of capacitance 3		
	(ii) Finding the number of capacitors 2		
	(i) $C_0 = \frac{\varepsilon_0 A}{d}$	1/2	
	$C = \frac{\varepsilon_0 A}{t}$	1/2	
	$(d-t)+\frac{c}{K}$		
	$t = \frac{d}{4}$		
	$C = \frac{\varepsilon_0 A}{\left(d - \frac{d}{4}\right) + \frac{d}{4K}} = \frac{\varepsilon_0 A}{d\left(\frac{3}{4} + \frac{1}{4K}\right)}$	1	
	$=C_0\frac{4K}{(3K+1)}$	1	
	Alternatively: When dielectric is inserted, the electric field between the plates is $E = E_0/K$ The potential difference will be	1⁄2	
	$\mathbf{V} = \mathbf{E}_0 \left(\frac{3\mathbf{d}}{4}\right) + \mathbf{E} \left(\frac{\mathbf{d}}{4}\right)$	1/2	
	$= \mathbf{E}_0 \left(\frac{3\mathbf{d}}{4}\right) + \frac{\mathbf{E}_0}{\mathbf{K}} \left(\frac{\mathbf{d}}{4}\right)$		
	$= V_0 \left(\frac{3}{4} + \frac{1}{4K} \right)$		
	$V = V_0 \left(\frac{3K + 1}{4K}\right)$	1	
	$C = \frac{Q_0}{V} = \left(\frac{4K}{3K+1}\right) \frac{Q_0}{V_0}$		
	$C = C_0 \left(\frac{4K}{3K+1}\right)$	1	
	(ii) Each capacitance can withstand 200V	1/2	
	No. of capacitors in each row = $\frac{1200}{200} = 6$		
	Net capacitance of each row= $1/6 \mu F$ Number of rows = n	1/2	
	$C_{eq} = C_1 + C_2 + \dots + C_n$		
	$C_{eq} = \frac{1}{6} + \frac{1}{6} + \dots - n$		
	$2=\frac{n}{6}$		

	(b) (i) (I) Writing Ampere circuital law & explaining the		
	(II) Reason for magnetic field outside long solenoid		
	approaching zero 1		
	(III) Reason for irregular shaped loop changing to		
	circular loop in uniform magnetic field 1 (ii) Finding the value of Projectance Prove 2		
	(ii) Finding the value of Resistance K_3 2		
	(i) (I) $\oint B.dl = \mu_0 \mathbf{I}_e$	1/2	
	I_e = Total current through the surface B= Magnetic field		
	dl = length of small element	1/2	
	(II) As length of solenoid increases, it appears like a long cylindrical metal sheet, so field outside approaches zero.	1	
	(III) For a given perimeter, a circle encloses greater area than any other shape, which maximizes the flux.	1	
	(ii) $R_1 = \frac{V}{I_g} - G \qquad \Rightarrow \frac{V}{I_g} = R_1 + G \qquad(1)$	1⁄2	
	$R_2 = \frac{V}{2I_g} - G \qquad \Rightarrow \frac{V}{2I_g} = R_2 + G \qquad(2)$	1⁄2	
	Solving (1) & (2) G = R - 2R	17	
	$\frac{2V}{2}$	*/2	
	$\mathbf{R}_{3} = \frac{\mathbf{I}_{g}}{\mathbf{I}_{g}} - \mathbf{G} \qquad(3)$		
	Solving using eq (1) & (3)	1/2	5
	$R_3 = 3R_1 - 2R_2$, 2	
33.	(a) (i) Drawing labeled Diagram 1 ¹ / ₂		
	Explanation ¹ / ₂		
	Writing expression of Magnifying power 1		
	(ii) Calculating the focal length of objective & eye		
	Objective $J_{\overline{o}}$ Eyepiece $H = f_{\overline{e}} \rightarrow f_{\overline{e}}$ A A A A A A A A A A	11/2	
	(Note: Deduct ¹ / ₂ mark, for not showing arrows with the rays)		

Light from distant object enters the objective lens & forms a real		
image A'B' at f_o .		
This image A'B' acts as an object for eye piece and eye piece	1⁄2	
forms a magnified image at infinity.		
Magnifying Power = $\frac{f_o}{f_e}$	1	
(ii) Image is formed at least distance of distinct vision		
$20=m_o \times m_e$		
$m_o = \frac{20}{5} = 4$	1/2	
$m_e = 1 + \frac{D}{f_e}$		
$f_e = \frac{25}{4} cm$	1/2	
$\frac{1}{1} - \frac{1}{1} = \frac{1}{1}$		
$v_e u_e f_e$		
$\frac{1}{1} - \frac{1}{1} = \frac{4}{1}$		
$-25 u_e 25$		
$u_e = -5cm$		
$L = \mathbf{v}_0 + \boldsymbol{u}_e $		
$v_0 = 9 cm$	1/2	
Given $\frac{V_0}{V_0} = 4$		
$\frac{1}{1} - \frac{1}{1} = \frac{1}{1}$		
$\mathbf{v}_0 \boldsymbol{u}_0 \boldsymbol{f}_0$		
$\frac{1}{1} - \frac{1}{1} - \left(-\frac{4}{1}\right)$		
$f_0 9 (9)$		
$f = -\frac{9}{cm}$		
$J_0 - \frac{1}{5} cm$	1⁄2	
OR		
(b) (i) Obtaining the expression for resultant intensity of		
interference pattern 2		
Writing maximum & minimum values of resultant		
intensity 1		
(ii) Calculating the distance of		
(I) First order minimum 1		
(II) Second order maximum from centre of screen 1		
(i) $y_1 = a \cos \omega t$		
$v_2 = a\cos(\omega t + \phi)$	1/2	
According to Principle of Superposition		

$\mathbf{y} = \mathbf{y}_1 + \mathbf{y}_2$	1/	
$=a\left[\cos\omega t + \cos\left(\omega t + \phi\right)\right]$	1/2	
$=2a\cos\frac{\phi}{2}\cos\left(\omega t+\frac{\phi}{2}\right)$		
$y = Acos\left(\omega t + \frac{\phi}{2}\right)$		
where, $A = 2a \cos \frac{\phi}{2}$	1/2	
$I = kA^2$	/2	
$I = k \left(4a^2 \cos^2 \frac{\phi}{2} \right)$		
$I = 4 I_0 \cos^2 \frac{\phi}{2}$	1⁄2	
Alternatively: If student writes		
$I = I_1 + I_1 + 2\sqrt{I_1I_1}\cos\phi$ (award one mark)		
Maximum value $I = 4I_0$	1/2	
Minimum value $I = 0$	1⁄2	
(ii) (I) Position of first order minimum		
$v = \frac{n\lambda D}{n}$	1/	
	1/2	
$y_1 = \frac{\lambda D}{a}$		
$=\frac{600\times10^{-9}\times1.5}{3\times10^{-3}}=3\times10^{-4}\mathrm{m}$	1⁄2	
(II) Position of second order maximum		
$y_n = (2n+1)\frac{\lambda D}{2a}$	1⁄2	
$n=2, y_2=\frac{5\lambda D}{2a}$		
$5 \times 600 \times 10^{-9} \times 1.5$ $$		
$=\frac{2\times3\times10^{-3}}{2\times3\times10^{-3}}=7.5\times10^{-3}$ m	1⁄2	5

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2025 SUBJECT PHYSICS (042) (PAPER CODE 55/7/2)

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession.
	To avoid mistakes, it is requested that before starting evaluation, you must read and
	understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
	examinations conducted, Evaluation done and several other aspects. Its' leakage to
	public in any manner could lead to derailment of the examination system and affect
	the life and future of millions of candidates. Sharing this policy/document to anyone,
	publishing in any magazine and printing in News Paper/Website etc may invite action
	under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
	be done according to one's own interpretation or any other consideration. Marking Scheme
	should be strictly adhered to and religiously followed. However, while evaluating,
	answers which are based on latest information or knowledge and/or are innovative,
	they may be assessed for their correctness otherwise and due marks be awarded to
	them. In class-X, while evaluating two competency-based questions, please try to
	understand given answer and even if reply is not from marking scheme but correct
	competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers
	These are in the nature of Guidelines only and do not constitute the complete answer. The
	students can have their own expression and if the expression is correct, the due marks
	should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each
	evaluator on the first day, to ensure that evaluation has been carried out as per the
	instructions given in the Marking Scheme. If there is any variation, the same should be zero
	after deliberation and discussion. The remaining answer books meant for evaluation shall
	be given only after ensuring that there is no significant variation in the marking of
	individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be
	marked. Evaluators will not put right (\checkmark)while evaluating which gives an impression that
	answer is correct and no marks are awarded. This is most common mistake which
	evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks
	awarded for different parts of the question should then be totaled up and written in the left-
	hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and
	encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks			
	should be retained and the other answer scored out with a note "Extra Question".			
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only			
	once.			
11	A full scale of marks 70 (example 0 to 80/70/60/50/40/30 marks as given in Question			
	Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.			
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours			
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per			
	day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced			
	syllabus and number of questions in question paper.			
13	Ensure that you do not make the following common types of errors committed by the			
	Examiner in the past:-			
	1. Leaving answer or part thereof unassessed in an answer book.			
	2. Giving more marks for an answer than assigned to it.			
	5. Wrong totaling of marks awarded on an answer. 4. Wrong transfer of marks from the inside pages of the answer book to the title page			
	5. Wrong question wise totaling on the title page.			
	6. Wrong totaling of marks of the two columns on the title page.			
	7. Wrong grand total.			
	8. Marks in words and figures not tallying/not same.			
	9. wrong transfer of marks from the answer book to online award list. 10 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is			
	10. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for			
	incorrect answer.)			
	11. Half or a part of answer marked correct and the rest as wrong, but no marks awarded.			
14	While evaluating the answer books if the answer is found to be totally incorrect, it should			
	be marked as cross (X) and awarded zero (0)Marks.			
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error			
	detected by the candidate shall damage the prestige of all the personnel engaged in the			
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all			
	concerned, it is again reiterated that the instructions be followed meticulously and			
	judiciously.			
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines			
	for spot Evaluation" before starting the actual evaluation.			
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to			
	the title page, correctly totaled and written in figures and words.			
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment			
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head			
	Examiners are once again reminded that they must ensure that evaluation is carried out			
	strictly as per value points for each answer as given in the Marking Scheme.			

MARKING SCHEME : PHYSICS (042)			
	CODE: 55/7/2		
Q.NO.	VALUE POINTS/EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION- A		
1.	(B) $E = 0$, $V = V_0$ (a constant)	1	1
2.	$(D) \left[ML^2 T^{-2} A^{-2} \right]$	1	1
3.	(B) zero	1	1
4.	(B) 3.20×10^{14} Hz	1	1
5.	(B) 0.2 mV	1	1
6.	(C) holes and few electrons	1	1
7.	(C) 16/3 Ω	1	1
8.	(C) capacitive and inductive respectively	1	1
9.	(A) 1/200 s	1	1
10.	(D) 3/4	1	1
11.	(C) same neutron number, but different atomic number.	1	1
12.	(A) both the potential barrier height and width of depletion layer decrease.	1	1
13.	(C) Assertion(A) is true and Reason(R) is false.	1	1
14.	(D) Both Assertion (A) and Reason (R) are false	1	1
15.	(B) Both Assertion(A) and Reason (R) are true but Reason	1	1
	(R) is not the correct explanation of Assertion(A).		
16.	(B) Both Assertion(A) and Reason (R) are true but Reason	1	1
	(R) is not the correct explanation of Assertion(A).		
	SECTION- B		
17.	Finding the ratio of drift velocities when joined in (i) Series 1 (ii) Parallel 1		
	$I - ne \Delta y$	1/2	
		, 2	
	$\frac{\mathbf{V}_{\mathbf{d}_1}}{\mathbf{d}_1} = \frac{\mathbf{A}_2}{\mathbf{d}_2}$	1/2	
	$\mathbf{v}_{\mathbf{d}_2}$ \mathbf{A}_1		
	(ii) Parallel		
	V V		
	$v_d = \frac{1}{RneA} = \frac{1}{\rho lne}$	1⁄2	
	V 1		
	$\frac{\mathbf{v}_{d_1}}{\mathbf{u}_1} = \frac{1}{\mathbf{u}_1}$		
	V _{d2} 1	1/2	2
10			
18.	Drawing Energy band diagram ofn type semiconductor1/2p type semiconductor1/2Showing donor/acceptor energy level1/2+1/2		

	E_{c} E_{c} E_{g} E_{v} E_{v	1+1	2
19.			
	Calculating the ratio of intensities 2		
	Given, $\frac{I_{max}}{I_{min}} = \frac{25}{9}$		
	$I_{max} \left(a_1 + a_2\right)^2 25$	1/2	
	$\frac{1}{I_{\min}} = \frac{1}{\left(a_1 - a_2\right)^2} = \frac{1}{9}$	1/2	
	$3(a_1+a_2)=5(a_1-a_2)$	72	
	$\frac{a_1}{a_2} = \frac{4}{1}$	1/2	
	$\frac{I_1}{I_1} = \frac{16}{I_1}$	1/2	2
	I ₁ 1	/ _	_
20.	(a) Deducing for (a)Size 1 (b)Location of the image produced by convex mirror 1 Let, u= nf From the Mirror formula, $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$ $= \frac{1}{f} + \frac{1}{nf}$ $v = \frac{nf}{n+1}$	1⁄2	
	$n = +ve$ $\therefore v < f$	1/2	
	$m = \frac{-v}{u} = \frac{1}{n+1}$	1/2	
	m is always positive & less than 1. (Note: Please award full credit if correctly concluded by any other method)	1⁄2	
	OR		

	(b) Finding the nature & focal length of lens 11/2 Stating answer for changing thickness 1/2		
	Stating answer for changing thickness ⁷ / ₂		
	$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3}$ $\frac{1}{12} = \frac{1}{10} - \frac{1}{15} + \frac{1}{f_3}$ $\frac{1}{12} = \frac{5 - 6 + 4}{10}$	1⁄2	
	$\frac{\overline{f_3}}{f_3} = \frac{60}{60}$		
	1 ₃ - 200m	1⁄2	
	Nature: Convex Yes	1/2 1/2	2
21.	Calculating Binding Energy per nucleon 2		
	$\Delta m = (2m_n + 2m_H) - m({}_2^4He)$	1⁄2	
	$= 2 \times 1.008665 + 2 \times 1.007825 - 4.002603$ $= 0.0303774u$	1/2	
	$BE = \Delta mc^2$	72	
	$=0.030377 \times 931$ = 28.2962 MeV	1/2	
	$\frac{\text{BE}}{\text{nucleon}} = \frac{28.2962}{4} = 7.07 \text{MeV}$	1⁄2	2
	SECTION- C		
22.	Writing the mathematical form of postulates of Bohr's TheoryTheory $1\frac{1}{2}$ Proving,(a) radius of the orbit is proportional to n^2 1(b) total energy of the atom is proportional to $1/n^2$ $\frac{1}{2}$		
	Mathematical form of postulates of Bohr's Theory (i) $E_n = \frac{-13.6}{n^2} \text{eV}$	1/2	
	Alternatively : Electron revolve in stable orbits with definite energy called stationary orbits.		
	(ii) $L = mvr = \frac{nh}{2\pi}$	1/2	
	(iii) $h\nu = E_f - E_i$	1/2	

	(a) $\frac{mv^2}{r} = \frac{Ze^2}{r^2}$ (1)	1⁄2	
	$mvr = \frac{nh}{2}$ (2)		
	Solving (1) & (2)		
	$\mathbf{r} = \mathbf{n}^2 \left(\frac{\mathbf{h}}{2\pi}\right)^2 \frac{4\pi\varepsilon_0}{\mathbf{m}\mathbf{e}^2} (3)$	1⁄2	
	Since energy in the orbit $E_n = \frac{-e^2}{8\pi\epsilon_0 r}$		
	Using eq (3) $E_n = \frac{-me^4}{8n^2 {\epsilon_0}^2 h^2}$	1/2	
	or $E_n \propto \frac{1}{n^2}$		3
23.	(a) Explaining Einstein's photoelectric equation1(b) Determining which metal will not showphotoelectric emission1½Reason when source is brought closer½		
	(a) $h\nu = \phi_0 + K_{max}$		
	$h\nu = Energy$ of incident radiation		
	ϕ_0 = Work function or minimum energy required to emit an	1	
	electron from metal surface		
	$K_{\text{max}} = \text{maximum kinetic energy of emitted electron}$		
	Alternatively: The energy of incident radiation $\Gamma(x, \phi)$ incident on a motal		
	surface, a part of it is used to overcome the work function & remaining energy provides maximum kinetic energy to the electrons.		
	(b) $\lambda = 550 \text{mm}$		
	$E = \frac{nc}{\lambda} = \frac{0.05 \times 10^{-9} \times 5 \times 10^{-19}}{330 \times 10^{-9} \times 1.6 \times 10^{-19}}$	1⁄2	
	=3.77 eV	1/2	
	Mo and Ni will not show photoelectric emission.	1⁄2	
	No change.	1/2	3
24.			
	 (a) (i)Writing Biot-Savart's Law in vector form 1 (ii)Finding magnitude & direction of net magnetic field at centre of two current carrying coils 2 		
	(i) $\vec{dB} = \frac{\mu_0}{4\pi} \frac{I(\vec{dl} \times \vec{r})}{r^3}$	1	

	$\therefore \tau = F_1 \frac{l}{2} \sin \theta + F_2 \frac{l}{2} \sin \theta$	1/2	
	$= I b B l \sin \theta$		
	$= \mathbf{I} \mathbf{A} \mathbf{B} \sin \theta \qquad \qquad$		
	$= m B \sin \theta$		
	$\vec{\tau} = \vec{m} \times \vec{B}$	1/2	
	Alternatively:		
	$\uparrow x \rightarrow$		
	PC		
	VI F		
	If the plane of the current carrying coil makes an angle \propto		
	with the magnetic field		
	$\vec{F}_{DA} = -\vec{F}_{Bc}$ (cancel each other)		
	Force on the arm BC is into the plane of the paper $ F_{DC} = IbB$	1/2	
	Force on the arm DA is out of the plane of the paper.		
	$ F_{AB} = IbB$		
	Since forces are equal & opposite so net force $= 0$	1/2	
	Both of them form a couple and magnitude of torque acting		
	τ =either force ×perpendicular distance between the two	1/2	
	forces.	, -	
	$\tau = IbB \times a\sin\theta$		
	$= IAB \sin \theta$		
	$\tau = IA \times B$	1/2	3
25			
23.	(a) Production of em waves 1 (b) Writing the waveler eth 9 was of		
	(b) writing the wavelength & use of (i) Microwaves		
	(i) Illtraviolet waves 1		
	(a) Electromagnetic waves are produced by an oscillating or	1	
	accelerated charge.		

	Alternatively:		
	An oscillating charge produces an oscillating electric field		
	which produces an oscillating magnetic field which in turn is		
	a source of oscillating electric field & so on.		
		17	
	(b) (1) Microwaves	1/2	
	Wavelength: 0.1 m to 1 mm	1/-	
	Use : Radar used in ancrait navigation.	72	
	where we ovens. (Any one)		
	(ii) Illtraviolet waves	1/2	
	Wavelength: 400 nm to 1 nm	72	
	Use : Kill germs in UV purifiers.	1/2	3
	LASIK eye surgery. (Any one)	, -	-
26.			
	(a) Obtaining expression for mutual inductance of two		
	concentric coils 2		
	(b) Finding self-inductance of the solenoid 1		
	(b) I maning sent inductance of the solenoid		
	(a) Magnetic field at centre of outer coil S_2		
	$\mu - \mu_0 I_2$	1⁄2	
	$B_2 = \frac{1}{2r_2}$		
	Flux linked with inner coil S_1 is		
	$\phi = B A$		
	$\varphi_1 - D_2 n_1$	1⁄2	
	$=\frac{\mu_0 I_2}{2r}.\pi r_1^2$		
	Also $\phi = M I$	1/2	
	$\therefore M_{12} = \frac{\mu_0}{2r} \cdot \pi r_1^2$		
	$2I_2$	1⁄2	
	(b) $\varepsilon = -L \frac{dI}{dt}$	1/	
	dt	1/2	
	$1 - 0.4 \times 50 \times 10^{-3}$		
	$L - \frac{1}{4 \times 10^{-3}}$	1/-	2
	=5H	1/2	3
27			
21.	Evelopining the formation of		
	Explaining the formation of		
	depletion layer and potential barrier 1+1		
	Feature of junction diode for its use as rectifier 1		
	When an electron diffuses from n-side to p-side, it leaves		
	behind an ionized donor on n side.		
	Similarly when a hole diffuses from p-side to n-side, it leaves		
	behind an ionized acceptor on p side.		
	This space charge region consisting of immobile ions on		
	either side of the junction is known as depletion layer.	1	

	As diffusion process continues, width of depletion layer increases and consequently strength of electric field increases across the junction and thus the drift current. The potential that prevents the movement of electron from n region into p region is called potential barrier.	1	
	$p \qquad \begin{array}{c} \ominus \ominus \oplus \oplus \\ \ominus \ominus \oplus \oplus \end{array} \qquad n \\ \ominus \ominus \oplus \oplus \\ \ominus \ominus \oplus \oplus \end{array}$		
	Hole diffusion $$ Hole drift		
	(Note : Award full credit of formation of depletion layer even if a student draws above diagram)		
	Diode allows current to pass only when it is forward biased as resistance is small whereas in reverse bias, its resistance is very large.	1	3
28.	Anternativery. Diode is undirectional.		
	(a) Calculating work done to separate two charges 1(b) Calculating electrostatic potential energy 2		
	(a) U= $\frac{kq_1q_2}{r}$ 9×10 ⁹ ×(-5×10 ⁻⁶)×(2×10 ⁻⁶)	1⁄2	
	$=\frac{10\times10^{-2}}{10\times10^{-2}}$		
	=-0.9 J W = U(infinity) - U(r) = 0.9 J	1/2	
	(b) $E = \frac{-dV}{dr}$		
	$dV = \frac{-A}{r^2} dr$	1/2	
	$V = \frac{A}{r}$		
	$U = q_1 V_1 + q_2 V_2 + \frac{kq_1q_2}{r_1}$	1/2	
	$= \left(-5 \times 10^{-6}\right) \left(\frac{8 \times 10^{4}}{4 \times 10^{-2}}\right) + \left(2 \times 10^{-6}\right) \left(\frac{8 \times 10^{4}}{6 \times 10^{-2}}\right) - 0.9$	1⁄2	
	= -10 + 2.67 - 0.9 = -8.24 J	1/2	3
	SECTION -D	, -	
29.	(i) (A) $1/\sqrt{n^2-1}$	1	
	(ii) (a) (B) 1.4	1	
	OR (b) (D) increase by 19%		

	(iii) (C) First real and then virtual	1	
	(iv) (A) 10cm	1	4
30.	(i) (D) 1	1	
	(ii) (C) 3.75×10^6	1	
	(iii) (B) 500° C	1	
	(iv) (a) (D) I decreases and II is almost constant	1	
	OR		4
	(b) (D) All I, II and III change		4
	SECTION- E		
31.			
	(a) (i) Drawing labeled Diagram 1 ¹ / ₂		
	Explanation ¹ / ₂		
	Writing expression of Magnifying power 1		
	(ii) Calculating the focal length of objective & eye		
	piece 2		
	1		
	and the formation		
	Objective Jo Eyepiece		
	it-∫e→		
		11/2	
	A		
	(Notes Deduct 1/ merels for not showing enough with the		
	(Note: Deduct ⁷ / ₂ mark, for not snowing arrows with the		
	Light from distant object enters the objective lens & forms a		
	real image $\Lambda' \mathbf{B}'$ at f	17	
	This is a A^2D^2 set of a state of the set of the se	1/2	
	I his image A B acts as an object for eye piece and eye piece		
	forms a magnified image at mininty.	1	
	Magnifying Power = $\frac{J_o}{f}$	1	
	(ii) Image is formed at least distance of distinct vision		
	$20-m \times m$		
	$20 - m_o \wedge m_e$	1/2	
	$m_o = \frac{20}{5} = 4$		
	5		
	$m_e = 1 + \frac{D}{c}$		
	f_e	17	
	$f = \frac{25}{cm}$	1/2	
	$\int_{e}^{f} 4$		
	1 1 1 1		
	$v_e u_e f_e$		
	1 1 4		
	$\frac{-25}{-25} - \frac{-25}{-4} = \frac{-25}{-25}$		
	u = 5 cm		
	$u_e = -3cm$		

$L = v_0 + u_e $		
$v_0 = 9 cm$	1/2	
Given, $\frac{\mathbf{v}_0}{\mathbf{v}_0} = 4$		
$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$		
1 1 (4)		
$\frac{1}{f_0} = \frac{1}{9} - \left(-\frac{1}{9}\right)$		
$f_0 = \frac{9}{5}cm$	1/2	
OR		
(b) (i) Obtaining the expression for resultant intensity of		
interference pattern 2		
Writing maximum & minimum values of resultant		
intensity 1		
(II) Eirst order minimum		
(II) Second order maximum from centre of screen 1		
(i) $y_1 = a \cos \omega t$	17	
$y_2 = a\cos(\omega t + \phi)$	1/2	
According to Principle of Superposition		
$\mathbf{y} = \mathbf{y}_1 + \mathbf{y}_2$	17	
$=a\left[\cos\omega t + \cos\left(\omega t + \phi\right)\right]$	1/2	
$=2a\cos\frac{\phi}{2}\cos\left(\omega t+\frac{\phi}{2}\right)$		
$y = A\cos\left(\omega t + \frac{\phi}{2}\right)$		
	1/2	
where, $A = 2a \cos \frac{\psi}{2}$		
$I = kA^2$		
$I = k \left(4a^2 \cos^2 \frac{\phi}{2} \right)$		
$I = 4 I_0 \cos^2 \frac{\phi}{2}$	1/2	
Alternatively: If student writes		
$I = I_1 + I_1 + 2\sqrt{I_1I_1} \cos \phi$ (award one mark)		
Maximum value $I = 4I_0$	1⁄2	
Minimum value $I=0$	1⁄2	
(ii) (I) Position of first order minimum		

	$n\lambda D$		
	$y = \frac{1}{a}$	17	
	$v_{\rm c} = \frac{\lambda D}{\Delta D}$	1/2	
	$=\frac{600\times10^{-9}\times1.5}{3}=3\times10^{-4}$ m	1/2	
	3×10 ⁻³		
	(II) Position of second order maximum		
	$y_n = (2n+1)\frac{\lambda D}{2}$		
	2a	1/2	
	$n = 2, y_2 = \frac{3\lambda D}{2a}$		
	$5 \times 600 \times 10^{-9} \times 15$	17	~
	$=\frac{3\times 600\times 10^{-1}\times 1.5}{2\times 3\times 10^{-3}}=7.5\times 10^{-4} \text{ m}$	1/2	3
32.	$(a) \qquad (b) (b) $		
52.	(i) Finding the value of capacitance 3		
	(ii) Finding the number of capacitors 2		
	(i) $C_0 = \frac{\varepsilon_0 A}{\varepsilon_0 A}$	17	
	d d	1/2	
	$C = \frac{\varepsilon_0 A}{t}$	1/2	
	$(d-t) + \frac{t}{K}$		
	t = d/.		
	$C = \frac{\varepsilon_0 A}{(-d) - d} = \frac{\varepsilon_0 A}{(3 - 1)}$	1	
	$\left(d - \frac{d}{4}\right) + \frac{d}{4K} = d\left(\frac{d}{4} + \frac{1}{4K}\right)$		
	$=C_{0}\frac{4K}{4K}$	1	
	$^{-0}(3K+1)$		
	Alternatively: When dielectric is inserted, the electric field		
	between the plates is $E = E_0/K$ The potential difference will be		
	$\begin{pmatrix} 3d \end{pmatrix}$ $\begin{pmatrix} d \end{pmatrix}$		
	$V = E_0 \left(\frac{3u}{4} \right) + E \left(\frac{u}{4} \right)$	1/2	
	(3d) = E(d)	1/2	
	$= \mathbf{E}_0 \left(\frac{3\mathbf{d}}{4} \right) + \frac{\mathbf{L}_0}{\mathbf{K}} \left(\frac{\mathbf{d}}{4} \right)$		
	$= \mathbf{V}_0 \left(\frac{3}{4} + \frac{1}{4\mathbf{K}} \right)$		
	$\mathbf{V} = \mathbf{V}_0 \left(\frac{3\mathbf{K} + 1}{4\mathbf{K}} \right)$	1	
	$\mathbf{C} = \frac{\mathbf{Q}_0}{\mathbf{V}} = \left(\frac{4\mathbf{K}}{3\mathbf{K}+1}\right) \frac{\mathbf{Q}_0}{\mathbf{V}_0}$	_	
	$a = \left(\frac{4K}{4K} \right)$	1	
	$C = C_0 \left(\frac{1}{3K+1} \right)$		
	(ii) Each capacitance can withstand 200V	1⁄2	

	$= (0.8\hat{i} + 0.6\hat{j}) \times 10^{-29} \times (1 \times 10^7)\hat{k}$		
	$= \left[0.8(-\hat{j}) + 0.6\hat{i} \right] \times 10^{-22}$	1/2	
	$\tau = \left[\sqrt{(0.8)^2 + (0.6)^2}\right] \times 10^{-22}$		
	$=10^{-22} Nm$	1/2	
	$\tan \alpha = \frac{ 0.8 }{ 0.8 }$	72	
	$\frac{0.6}{\alpha = \tan^{-1}\left(\frac{4}{-1}\right)} \qquad 0.\$_{0}$	1/2	
	$\alpha = 53^{\circ}$		5
33.			
	(a) (i) Labelled diagram 1 Working principle of moving coil galvanometer 1		
	Use of (i) Radial magnetic field ¹ / ₂		
	(ii) Soft iron core ¹ / ₂		
	Reason 1		
	Scale		
	Peinter A Permanent magnet		
	Sp-C	1	
	Pivot		
	Solt-iron Core		
	Uniform radial magnetic field		
	Principle : A current carrying coil placed in uniform	1	
	חומצווכות הבות בגדבווכותכל מ נסוקות.		
	(i) Radial magnetic field makes the scale linear Alternatively : Radial magnetic field provides maximum	1/2	
	Torque.		
	(ii) Use of soft iron core is to increase the strength of magnetic field/ increase sensitivity of the galvanometer.	1/2	
	(ii) Current sensitivity is defined as deflection per unit current.	1	
	<u>Alternatively</u> :		

$I_{s} = \frac{\Phi}{I} = \frac{NAB}{k}$ Voltage sensitivity $V_{s} = \frac{\Phi}{V} = \left(\frac{NAB}{k}\right)\frac{I}{V} = \left(\frac{NAB}{k}\right)\frac{1}{R}$ Increase in number of turns, increases the current sensitivity and resistance of the galvanometer in the same proportion of current sensitivity therefore Voltage sensitivity remains unchanged. OR (b) (i) (I) Writing Ampere circuital law & explaining the terms. 1 (II) Reason for magnetic field outside long solenoid approaching zero 1	
Voltage sensitivity $V_s = \frac{\Phi}{V} = \left(\frac{NAB}{k}\right) \frac{I}{V} = \left(\frac{NAB}{k}\right) \frac{1}{R}$ Increase in number of turns, increases the current sensitivity and resistance of the galvanometer in the same proportion of current sensitivity therefore Voltage sensitivity remains unchanged. OR (b) (i) (I) Writing Ampere circuital law & explaining the terms. 1 (II) Reason for magnetic field outside long solenoid approaching zero 1	
Increase in number of turns, increases the current sensitivity and resistance of the galvanometer in the same proportion of current sensitivity therefore Voltage sensitivity remains unchanged. (b) (i) (I) Writing Ampere circuital law & explaining the terms. 1 (II) Reason for magnetic field outside long solenoid approaching zero 1	
OR (b) (i) (I) Writing Ampere circuital law & explaining the terms. 1 (II) Reason for magnetic field outside long solenoid approaching zero 1	
(b) (i) (I) Writing Ampere circuital law & explaining the terms. 1 (II) Reason for magnetic field outside long solenoid approaching zero 1	
 (III) Reason for irregular shaped loop changing to circular loop in uniform magnetic field (ii) Finding the value of Resistance R₃ 2 	
(1) (1) $($	
dl = length of small element	
(II) As length of solenoid increases, it appears like a long cylindrical metal sheet so field outside approaches zero.	
(III). For a given perimeter, a circle encloses greater area than any other shape, which maximizes the flux. $\frac{1}{2}$	
(ii) $R_1 = \frac{V}{I_g} - G \qquad \Rightarrow \frac{V}{I_g} = R_1 + G \qquad(1)$	
$R_{2} =G \implies R_{2} + G =(2)$	
$R_{2} = \frac{1}{2I_{g}} - G \qquad \Rightarrow \frac{1}{2I_{g}} = R_{2} + G \qquad(2)$ Solving (1) & (2)	1

	Maultu - Calance
	Marking Scheme Strictly Confidential
	(For Internal and Destricted use only)
	(For Internal and Restricted use only) Sonior School Cortificate Examination 2025
	SUBJECT PHYSICS (042) (PAPER CODE 55/7/3)
Gene	ral Instructions: -
<u>0 cnc</u> 1	You are aware that evaluation is the most important process in the actual and correct
-	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession.
	To avoid mistakes, it is requested that before starting evaluation, you must read and
	understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
	examinations conducted, Evaluation done and several other aspects. Its' leakage to
	public in any manner could lead to derailment of the examination system and affect
	the life and future of millions of candidates. Sharing this policy/document to anyone,
	publishing in any magazine and printing in News Paper/Website etc may invite action
	under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
	be done according to one's own interpretation or any other consideration. Marking Scheme
	should be strictly adhered to and religiously followed. However, while evaluating,
	answers which are based on latest information or knowledge and/or are innovative,
	they may be assessed for their correctness otherwise and due marks be awarded to
	them. In class-X, while evaluating two competency-based questions, please try to
	understand given answer and even if reply is not from marking scheme but correct
	competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers
	These are in the nature of Guidelines only and do not constitute the complete answer. The
	should be swarded accordingly.
5	The Head Examiner must go through the first five answer books evaluated by each
3	evaluator on the first day, to ensure that evaluation has been carried out as per the
	instructions given in the Marking Scheme. If there is any variation, the same should be zero
	after deliberation and discussion. The remaining answer books meant for evaluation shall
	be given only after ensuring that there is no significant variation in the marking of
	individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be
	marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that
	answer is correct and no marks are awarded. This is most common mistake which
	evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks
	awarded for different parts of the question should then be totaled up and written in the left-
	hand margin and encircled. This may be followed strictly.

8	If a question does not have any parts, marks must be awarded in the left-hand margin and
	encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks
	should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only
	once.
11	A full scale of marks 70 (example 0 to 80/70/60/50/40/30 marks as given in Question
	Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per
	day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced
	syllabus and number of questions in question paper.
13	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past:-
	1. Leaving answer or part thereof unassessed in an answer book.
	2. Giving more marks for an answer than assigned to it.
	3. Wrong totaling of marks awarded on an answer.
	4. Wrong transfer of marks from the inside pages of the answer book to the title page.
	5. Wrong totaling of marks of the two columns on the title page.
	7 Wrong grand total
	8. Marks in words and figures not tallying/not same.
	9. Wrong transfer of marks from the answer book to online award list.
	10. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	11. Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should
	be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all
	concerned, it is again reiterated that the instructions be followed meticulously and
	judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines
	for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME : PHYSICS(042)				
	CODE : 55/7/3		TOTAL	
Q.NO.	VALUE POINT/ EXPECTED ANSWERS	MARKS	TOTAL	
	SECTION A		MAKKS	
1	SECTION-A	1	1	
1.	(C) holes and few electrons	1	1	
2.	$\frac{(C)}{C} 20^{\circ}C$	1	1	
4	$(D) \left[M T^{2} T^{-2} A^{-2} \right]$	1	1	
		1	1	
5.	(C) same neutron number, but different atomic number.	1	1	
6.	(B) 0.2 mV		1	
/.	(B) 3.20×10^{14} Hz	1	1	
8.	(A) 1/200 s	1	1	
9.	(A) BA sin α	1	1	
10.	(C) 13.6 eV	1	1	
11.	(C) capacitive and inductive respectively	1	1	
12.	(A) Both the potential barrier height and width of depletion layer	1	1	
10	decrease.			
13.	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is not the	1	1	
1.4	correct explanation of Assertion(A).	1	1	
14.	(D) Both Assertion (A) and Reason (R) are false.	1	1	
15.	(B) Both Assertion(A) and Reason (R) are true but Reason(R) is not the	1	1	
16	correct explanation of Assertion(A). (C) A section (A) is true and B second (B) is false	1	1	
16.	(C) Assertion(A) is true and Reason(R) is false.	1	1	
17	SECTION- B			
17.	Calculating current passing through battery 2			
	The given circuit forms a balanced Wheatstone bridge so no current flows			
	through 50 resistor.	1/2		
	30×60	/ =		
	$R_{eq} = \frac{1}{30+60}$	1/2		
	-200			
	- 2022			
	$I = \frac{V}{T}$	1⁄2		
	R_{eq}			
	6 3			
	$=\frac{1}{20}=\frac{1}{10}A$	1/2	2	
18.				
	Finding the intensity at a point on the screen 2			
	$I_0 = I_1 + I_2 + 2\sqrt{I_1}\sqrt{I_2}\cos\phi$	1/2		
	$=I + I + 2I\cos^{0}0$	1/2		

	=2I+2I=4I		
	$I = I_0 / 4$	1⁄2	
	Intensity at point P		
	$I' = I + I + 2I \cos \pi/3$		
	=31		
	$-\frac{3I_0}{2}$	1/2	
	- 4		
	Alternatively:	1	
	$I = I_0 \cos^2 \phi / 2$	1 14	
	$I = I_o \cos^2 \pi / 6$	1/2	
	$3I_0$	1⁄2	2
	$=\frac{1}{4}$		
19.			
	Defining distance of closest approach $\frac{1}{2}$		
	Deriving the expression for distance of closest		
	approach 1½		
	The distance between the α particle and the target nucleus when whole	17	
	Kinetic energy of an α particle gets converted into potential energy.	1/2	
	Alternatively:		
	It is the distance from the nucleus at which alpha particle stops		
	momentarily and then begins to retrace its path.		
	At distance of closest approach		
	$\mathbf{K} = \mathbf{U}$		
	(2e)(Ze)	1	
	$K = \frac{1}{4\pi\varepsilon_0 d}$		
	$27 \mathbf{z}^2$		
	$\therefore d = \frac{2Ze}{T}$	1/	2
	$4\pi\varepsilon_0 \mathbf{K}$	1/2	2
20.			
	(a) Deducing for		
	(a)Size 1		
	(b)Location of the image produced by convex mirror 1		
	Let, $u = nf$		
	From the Mirror formula,		
	$\frac{1}{1}$	1/2	
	v u f		
	1 _1 1		
	${v}$		

$=\frac{1}{f} + \frac{1}{nf}$ $v = \frac{nf}{n+1}$	1/2	
$n = +ve \dots v < 1$ -v 1	14	
m = - = - =	72	
m is always positive & less than 1. Note: Award full credit if correctly concluded by any other method.	1/2	
OR		
(b) Finding the nature & focal length of lens 11/2 Stating answer for changing thickness 1/2		
$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3}$ $\frac{1}{12} = \frac{1}{10} - \frac{1}{15} + \frac{1}{f_3}$ $1 5 - 6 + 4$	1⁄2	
$\frac{\overline{f_3}}{\overline{f_3}} = \frac{60}{60}$	1/2	
$f_3 = 20 \mathrm{cm}$	/2	
Nature: Convex Yes	1/2 1/2	2
21. Drawing Energy band diagram of n type semiconductor ^{1/2} p type semiconductor ^{1/2} Showing donor/acceptor energy level ^{1/2+1/2}		
E_{c} E_{c	1+1	2

	SECTION- C		
22.	Explaining the formation of depletion layer and potential barrier 1+1 Feature of junction diode for its use as rectifier 1		
	 When an electron diffuses from n-side to p-side, it leaves behind an ionized donor on n side. Similarly when a hole diffuses from p-side to n-side, it leaves behind an ionized acceptor on p side. This space charge region consisting of immobile ions on either side of the junction is known as depletion layer. As diffusion process continues width of depletion layer increases and consequently strength of electric field increases across the junction and thus the drift current. The potential that prevents the movement of electron from n region into p region is called potential barrier. 	1	
	The provide the second structure of the second structure is shown with the help of above diagram.		
	Diode allows current to pass only when it is forward biased as resistance is small whereas in reverse bias resistance is very large. Alternatively : Diode is unidirectional.	1	3
23.	Calculating (a) Net outward flux through the cylinder2 (b) Net charge inside the cylinder $\phi_L = \vec{E} \cdot \Delta \vec{S}$		
	$=100(-\hat{i}).\Delta S(-\hat{i})$	1/2	
	$=100 \times \pi (2 \times 10^{-1})$ = $4 \pi \times 10^{-2} \text{ Nm}^2/\text{C}$ $\phi = 100(\hat{i}) \Delta S(\hat{i})$	1⁄2	
	$ \begin{aligned} \varphi_{R} = 100(t) \cdot \Delta 5(t) \\ = 100 \times \pi (2 \times 10^{-2})^{2} \\ = 4 \pi \times 10^{-2} \text{ N m}^{2}/\text{C} \end{aligned} $		

	$\phi_{\text{total}} = \phi_{\text{L}} + \phi_{\text{R}}$	1⁄2	
	$=8\pi \times 10^{-2} \text{ Nm}^2/\text{C}$	1/	
	$=25.12 \times 10^{-2} \text{ Nm}^2/\text{C}$	1/2 1/2	
	Charge $q = \varepsilon_0 \phi_{1,1}$	/2	
	$-25 12 \times 10^{-2} \times 8.85 \times 10^{-12}$		
	$-25.12 \times 10^{-11} \text{ C}$	1⁄2	3
	=0.22×10 C		
24.	Reason for(a) Independence of maximum kinetic energy of photoelectrons & intensity of incident radiation (b) Increase in photoelectric current with increase in intensity of incident radiation 	1 1 1	
			2
	$K_{\text{max}} = eV_o = hv - hv_o$		5
25.	 (a) (i)Writing Biot-Savart's Law in vector form 1 (ii)Finding magnitude & direction of net magnetic field at centre of two current carrying coils 2 		

	$\tau = IbB \times l\sin\theta$	1/2	
	$\vec{ au} = I \vec{A} imes \vec{B}$		_
	$\vec{\tau} = \vec{m} \times \vec{B}$	1/2	3
26.			
	Naming the electromagnetic radiation & writing		
	their frequency range 3		
		1/	
	(a) Name: X- rays Frequency Range: $10^{16} - 10^{20}$ Hz	1/2 1/2	
	Frequency Kange. 10 - 10 112	/2	
	(b) Name: Infra-red radiation	1/2	
	Frequency Range : $10^{12} - 10^{14}$ Hz	1⁄2	
	(a) Name Dalla man	1/	
	(c) Name: Radio waves Frequency Range: $10^5 - 10^9$ Hz	$\frac{1}{2}$	3
27.		72	5
	(a) Identifying element X and writing expression for		
	reactance 1		
	(b) Plotting a graph to show variation of reactance with frequency		
	(c) Plotting variation of voltage & current with time 1		
	(a) Inductor		
	$X_L = 2\pi f L$	1/2	
	(b) X ₁	1/2	
		1	
	$\swarrow f$		
	(c)		
	ωt_{1} ωt_{1}	1	
	π 2π		2
			3
20			
28.			
	writing the mathematical form of postulates of Bohr's Theory		
	Proving,		
	(a) radius of the orbit is proportional to n^2 1		
	(b)Total energy of the atom is proportional to $1/n^2$ ¹ / ₂		
28.	Writing the mathematical form of postulates of Bohr's Theory $1\frac{1}{2}$ Proving, (a) radius of the orbit is proportional to n^2 1 (b)Total energy of the atom is proportional to $1/n^2$ $\frac{1}{2}$		

	Mathematical form of postulates of Bohr's Theory		
	() F -13.6 H		
	(1) $E_n = \frac{1}{n^2} eV$	1⁄2	
	Alternatively : Electron revolve in stable orbits with definite energy		
	called stationary orbits.		
	nh		
	(11) $L=mvr=\frac{1}{2\pi}$	1/2	
	(iii) $h\nu = E_{1} - E_{2}$		
	$(\mathbf{m}) \mathbf{m} \mathbf{L}_{\mathbf{f}} \mathbf{L}_{\mathbf{i}}$	1/2	
	(a) $\frac{mv^2}{m} = \frac{Ze^2}{r^2}$ (1)	17	
	\mathbf{r} \mathbf{r}^2	1/2	
	$myr = \frac{nh}{m} \qquad(2)$		
	2π		
	Solving (1) & (2)		
	$_{2}(h)^{2} 4\pi\epsilon_{0}$	1/2	
	$r=n^2\left(\frac{1}{2\pi}\right)\frac{1}{me^2}$ (3)	/2	
	(2π) m^2		
	Since energy in the orbit $E_n = \frac{-e}{2}$		
	$8\pi\epsilon_0 r$		
	Using eq. (2) $\mathbf{E} = -\mathbf{me}^4$		
	Using eq (3) $E_n = \frac{1}{8n^2 \varepsilon_0^2 h^2}$	1/2	
	1		
	or $E_n \propto \frac{1}{n^2}$		3
	SECTION- D		
29	(i) (a) (D) I decreases and II is almost constant	1	
27.	(i) (ii) (D) I decreases and it is annost constant OR	1	
	(b) (D) All I. II and III change		
	(i) (B) 500° C	1	
	(1) (1) (1) 500 C	1	
	(m) (C) 3.75×10	1	4
20	(1V) (D) I	1	
30.	(1) (C) First real and then virtual $(ii) (A) = 10 \text{ mm}$		
		1	
	(iii) (A) $1/\sqrt{n^2-1}$	1	
	(iv) (a) (B) 1.4	1	
	OR		4
	(D) (D) increase by 19%		•
21	SECTION- E		
51.	(a) (i) Labelled diagram 1		
	(a) Working principle of moving coil galvanometer 1		
	Use of (i) Radial magnetic field ¹ / ₂		
	(ii) Soft iron core $\frac{1}{2}$		
	(ii) Defining current sensitivity 1		
	Reason 1		

	(i) (I) $\oint \vec{B}.\vec{dl} = \mu_0 \mathbf{I}_e$	1⁄2	
	I_e = Total current through the surface		
	B= Magnetic field	1/2	
	dl = length of small element	/2	
	(II) As length of solenoid increases, it appears like a long cylindrical metal sheet so field outside approaches zero.	1	
	(III) For a given perimeter, a circle encloses greater area than any other shape, which maximizes the flux.	1	
	(ii) $\mathbf{R}_1 = \frac{\mathbf{V}}{\mathbf{I}_g} - \mathbf{G} \qquad \Rightarrow \frac{\mathbf{V}}{\mathbf{I}_g} = \mathbf{R}_1 + \mathbf{G} \qquad(1)$	1⁄2	
	$R_{2} = \frac{V}{2I_{g}} - G \qquad \Rightarrow \frac{V}{2I_{g}} = R_{2} + G \qquad(2)$	1⁄2	
	Solving (1) & (2) G = R = -2R	1/	
	$O = R_1 - 2R_2$	1/2	
	$R_3 = \frac{2}{1} - G$ (3)		
	Solving using eq. (1) & (3)		
	$R_{a} = 3R_{a} - 2R_{a}$	1/2	5
32.			
	(a) (i) Drawing labeled Diagram 1½ Explanation ½ Writing expression of Magnifying power 1 (ii) Calculating the focal length of objective & eye piece 2		
	Objective $f_{\overline{o}}$ Eyepiece $f_{\overline{e}}$ $f_{\overline{e}}$ f	11⁄2	
	(Note: Deduct $\frac{1}{2}$ mark, for not showing arrows with the rays) Light from distant object enters the objective lens & forms a real image A'B' at f_o .		
	This image A'B' acts as an object for eye piece and eye piece forms a magnified image at infinity.	1⁄2	

	1	1
Magnifying Power = $\frac{f_o}{f_e}$	1	
(ii) Image is formed at least distance of distinct vision		
$20=m_o \times m_e$		
20	1/2	
$m_o = \frac{1}{5} = 4$		
$m_e = 1 + \frac{1}{f}$		
J_e	1/2	
$f_e = \frac{2S}{\Lambda} cm$, _	
$\frac{1}{1} - \frac{1}{1} = \frac{1}{6}$		
$V_e u_e f_e$		
$\frac{1}{1} - \frac{1}{1} = \frac{4}{1}$		
$-25 u_e 25$		
$u_e = -5cm$		
$L = \mathbf{v}_0 + \boldsymbol{u}_1 $		
v - 0 cm	1/2	
	72	
Given, $\frac{\mathbf{v}_0}{2} = 4$		
u_0		
$\frac{1}{1-1} = \frac{1}{1-1}$		
$\mathbf{v}_0 \boldsymbol{u}_0 \boldsymbol{f}_0$		
$1 \ 1 \ (4)$		
$\frac{1}{f_0} = \frac{1}{9} - (\frac{1}{9})$		
9		
$f_0 = \frac{1}{5}cm$	1/2	
OR		
(b)		
(i) Obtaining the expression for resultant intensity of		
interference pattern 2		
Writing maximum & minimum values of resultant		
intensity I (ii) Coloulating the distance of		
(I) Calculating the distance of (I) First order minimum		
(II) Second order maximum from centre of screen 1		
(iii) Second order maximum from centre of sereen 1		
(i) $y_1 = a \cos \omega t$		
$y_2 = a\cos(\omega t + \phi)$	1/2	
According to Principle of Superposition		
$y = y_1 + y_2$		
$-a[\cos \omega t + \cos (\omega t + \phi)]$	1/2	
$-\alpha \left[\cos \omega + \cos \left(\omega + \psi\right)\right]$	12	

	$=2a\cos\frac{\phi}{2}\cos(\omega t + \frac{\phi}{2})$		
	$y = A\cos\left(\omega t + \frac{\phi}{2}\right)$		
	where $A = 2a \cos \frac{\phi}{2}$	1⁄2	
	$\frac{1}{I = kA^2}$		
	$I = k \left(4a^2 \cos^2 \frac{\phi}{2} \right)$		
	$I = 4 I_0 \cos^2 \frac{\phi}{2}$	1⁄2	
	<u>Alternatively</u> : If student writes		
	$I = I_1 + I_1 + 2\sqrt{I_1I_1}\cos\phi$ (award one mark)		
	Maximum value $I = 4I_0$	1/2	
	Minimum value $I = 0$	72	
	(ii) (I) Position of first order minimum		
	$v = \frac{n\lambda D}{n}$		
	$y_1 = \frac{\lambda D}{\alpha}$	1/2	
	$600 \times 10^{-9} \times 1.5$ 2 10 ⁻⁴		
	$=\frac{3\times10^{-3}}{3\times10^{-3}}=3\times10^{-3}$ m	1⁄2	
	(II) Position of second order maximum		
	$y_n = (2n+1)\frac{\lambda D}{2a}$		
	$n=2, y_2 = \frac{5\lambda D}{2a}$	1⁄2	
	$=\frac{5\times600\times10^{-9}\times1.5}{2}=7.5\times10^{-4}\mathrm{m}$	1/2	5
22	$2 \times 3 \times 10^{-3}$		
33.	(a) (i) Finding the new value of capacitance 3 (ii) Finding the number of capacitor 2		
	(1) $C_0 = \frac{d}{d}$	1⁄2	
	$C = \frac{\varepsilon_0 A}{1}$	1/2	
	$(d-t)+\frac{t}{K}$		
	$t = \frac{d}{4}$		
		1	

$C = \frac{c_0 A}{\left(d - \frac{d}{4}\right) + \frac{d}{4K}} = \frac{c_0 A}{d\left(\frac{3}{4} + \frac{1}{4K}\right)}$	1	
$=C_0 \frac{4K}{(3K+1)}$	1/2	
Alternatively: When dielectric is inserted, the electric field between the plates is $E = E_0/K$ The potential difference will be	1/2	
$V = E_0 \left(\frac{3d}{4}\right) + E\left(\frac{d}{4}\right)$		
$= E_0 \left(\frac{3d}{4}\right) + \frac{E_0}{K} \left(\frac{d}{4}\right)$		
$= V_0 \left(\frac{3}{4} + \frac{1}{4K}\right)$	1	
$V = V_0 \left(\frac{3K+1}{4K}\right)$		
$C = \frac{Q_0}{V} = \left(\frac{4K}{3K+1}\right) \frac{Q_0}{V_0}$	1	
$C = C_0 \left(\frac{4K}{3K+1}\right)$	1⁄2	
(ii) Each capacitance can withstand 200V		
No. of capacitors in each row = $\frac{1200}{200}$ = 6	1⁄2	
Net capacitance of each row= $1/6 \mu\text{F}$		
Number of rows = n		
$C_{eq} = C_1 + C_2 + \dots + C_n$		
$C_{eq} = \frac{1}{6} + \frac{1}{6} + \dots - n$		
$2 = \frac{n}{6}$	1/2	
Total no. of capacitors in the arrangement = 6×12	1⁄2	
= 72 OR		
(b) (i) Deriving the expression of electric potential		
due to dipole		
I. along its axis 11/2		
II. along its bisector line $1\frac{1}{2}$		
(ii) Calculating the torque 2		

